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Sensitivity analysis for deep geologic repository simulations
in crystalline rock
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Purpose of Sensitivity Analysis (SA)

= |dentify features, events, and processes (FEPs) and their related
parameters important to
* Performance (safety)
* Uncertainty (confidence)

= Quantify the relative importance of these inputs and FEPs

= Use the results to
* Improve understanding of the system
* |dentify FEPs and inputs that require careful characterization (and data
collection)

* |dentify weaknesses in the system that might be averted by a change in
repository design or site
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Crystalline Reference Case Investigation

= Generic, hypothetical site
= Crystalline rock similar to

Hydrogeological description

Forsmark =
Hydraulic Soil Domains . 4
* Decreasing fracture density with (HSD) o S aly \ Hydraulic Rock mass
\ n Domains (HRD)
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* Established hydraulic conductor S 2 ¥
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* Non-copper waste packages
. - Figure 8-1. Cartoon showing the division of the crystalline bedrock and the regolith above it {Quaternary
* Most or all fail by 1 million years depasits mainly) into three hydraulic domains.
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e Buffer surrounding waste packages (2009

= Ref: Swiler et al. (2021a)
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Discrete Fracture Network Implementation
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Domain and Mesh
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Cut-away of a DFN realization mapped to porous medium grid, showing the
full repository and the far half of the model domain.
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Crystalline Reference Case

Nested sampling to understanding the relative importance of finWorks DF(ESSS?,!]":)"Q
spatial variability vs epistemic uncertainties. 1000 PFLOTRAN runs.
)> Epistemic
Sampling

DAKOTA ‘ (40 samples) II
Repository

Description PF E@ERiN: simulation

Measures of Spatial Heterogeneity
Quantities of Interest (Qol)

Epistemic Variables

Fractional dissolution

rate of spent (used) (Graph Metrics)

Glacial till permeability . .-
The relative shortest travel Description
pBuffer Buffer porosity STT time between repository
and aquifer. Peak 1129 M [M] Peak I-129 concentration in the aquifer.
permDRZ DRZ permeability Average number of inter-
sections per fracture. A Fractional Mass Flux from Instantaneous fractional loss rate of tracer remainin
- g
permBuffer Buffer permeability aveDegree measure of how connected  FEISFETVIVE S in repository at 1 Myr. Indicator of repository retention.
the network is over the - -
meanWPrate Mean of the waste entire domain. Ratio of rock-to-aquifer vs. rock-to-east-boundary

Rock Aq_Rock Eb_1Myr [-] water fluxes at 1 Myr. Indicator of hydrological
behavior.

ackage corrosion rate
P 9 Number of fractures

Standard deviation of intersecting the repository. — :
stdWPrate the waste package N i -3 A measure of number of MdRTofSpikeinRepository Time when half an initial mass of tracer is flushed

corrosion rate potential flow pathways out [yr] from repository. Indicator of repository retention.
Instant release fraction of the repository region.
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DFN realizations strongly affect performance Qol probabilities

eCDF over 1000 runs
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Peak 129 concentration most sensitive to spatial heterogeneity

and rateUNF

Sensitivity without Graph Metrics
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Mean Residence Time sensitive to spatial heterogeneity

and pBuffer
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Rock to Aquifer : Rock to East Water Flux Ratios sensitive to

spatial heterogeneity

* Method may underestimate sensitivity to kGlacial

* Graph metrics don't fully explain why DFN 5 has Sensitivity without Graph Metrics
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Expanded set of graph metrics for 100 DFNs don't
show strong correlation with Peak 2°| Concentration

Graph Metric Correlated Depth Dependent

Average Degree (average #
: . 0.104
intersections per fracture)
Length of Shortest Path Between Repo

. -0.098
& Aquifer
Number of Intersections with

. 0.116
Repository
Number of Intersections -0.325
Number of Fractures -0.307
Shortest Travel Time Between Repo &

. 0.085

Aquifer
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Conclusions

* Spatial heterogeneity from stochastically generated DFNs
dominates uncertainty in Qols

* Qols also sensitive to some epistemic uncertainties (rateUNF,
pBuffer)

* Current graph metrics imperfectly represent effect of spatial
heterogeneity

* Dual loop structure separates spatial + epistemic uncertainties

 Further development needed to fully capture spatial heterogeneity’s
effect in sensitivity analysis
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