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Sandia Free-Piston Hypersonic Shock Tunnel (HST)

Tunnel Specifications
= Nozzle Exit Dia. =0.36 m

= Test section diameter 0.5 m
= Run times of 1-2 milliseconds

= M =8-10 (dependent on
enthalpy and spec heat ratio)
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Experiments in HST

= Complex HST Environment
— Stagnation region gases react
— Gas rapidly expanded through nozzle
— Result: thermal non-eq., NO addition (PLIF)

Stagnation
Region

* Free-stream characterization necessary

— Temperature: Pulse-burst CARS for N,, O, (See M.
Jans et al., AIAA2022) 1

— Velocity: NO LIF
— 100-kHz data with pulse-burst laser!

= Examine boundary layer products
— Speciation/temperature of CO
» Laser absorption (Daniel et al., AIAA2022)

e CARS--Coherent Anti-Raman Stokes Raman
Scattering (Kearney et al., AIAA2022)




Pulse-burst laser for 100-kHz laser diagnostics

» Burst-mode lasers have allowed
experimentalists to access high-speeds
(10s to 100s of kHz)

. Nd:YAG Laser
* While powerful, these systems are not PRy

wavelength tunable—this prohibits fixed wavelength!

application of chemically specific imaging

and spectroscopic tools Wavelength-tunable

sources enable high-
speed CARS and LIF
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Robust OPQO Design for Shock Tunnel Facility Operation

« Derived from Jiang, Hsu et al. (Spectral Energies) design
e |C pump mirror permits high 355-nm intensities

* Custom waveplate minimizes path to SFG crystal

» Single-pass pump

» Depleted pump used for SFG

« Unseeded-—output bandwidth ~10 cm-' FWHM

1.5-2% conversion with 800-1200 «J/pulse @ 226 nm
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Nitric Oxide LIF imaging in free-piston shock-tube cylinder startup
flow

* 100-kHz planar laser-induced P B
fluorescence using pulse-burst laser iz
and frequency narrow OPQO near A = | e
226 nm of page)
g;? ] W Camera Lens
* "Free-stream” is M = 2 post-shock s ntensiier H?M%’Sed

flow induced by M = 8 shock
« NO concentration ~4%
« T~3000K, P~1atm
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Al et e Broadband excitation of NO

e OPO spectrum is ~10 cm-1
FWHM, tuned to 226.05 nm

» Excite multiple transitions in
NO AZY - X?IT bandhead region
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Cylinder Wake Results

Simulated NO LIF Signal (E. Jans, Sandia)

Visualization of cylinder startup, U = 2.5 km/s, T = 3000 K
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7 I NO PLIF Imaging in M = 9 Shock Tunnel Flow

Nitric Oxide Velocimetry

M =9 flight condition at

130 Kkf e Thermodynamic nonequilibrium conditions at
- t nozzle exit make free-stream velocity uncertain
« Enthalpy ~ 5 MJ/kg * At free-stream density, NO fluorescence
_ ) ) lifetime is “long” ~ 200 ns
* NO PLIF Visualization over « Can be tracked when velocity is several km/s
large, 85-mm field of view
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f—>] eI
€
E
s |
L2, [
S = 7/ 7}
= >
S }‘ 10 us I‘ 10 us )I
0




Free-Stream Characterization: Velocity

NO is presentin shock tunnel flow (Xyo~4-5%)
Tracer for flow visualization
Nitric Oxide Tagging Velocimetry
Long fluorescence lifetime, >100 ns
¢ Ux=3km/s=3 um/ns, At~100 ns = Ax~300 um
» Track NO fluorescence at high image magnification

Phantom 7510

LIF beam tracks flow
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9 I 2D Nitric Oxide Velocimetry?
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10 I Summary and Conclusions

» Shock-tunnel conditions are impacted by non-
equilibrium processed in the nozzle
» Elevated nitric oxide, ~4%
* Nonequilibrium T, (Jans, AIAA2022)

* 100-kHz burst-mode NO PLIF provides effective
visualization of NO during transient shock tunnel
processes.

* A robust, wideband OPO design performed well
for visualization and velocimetry during shock-
tunnel entries

» Pulse energies in excess of 1 mJ/pulse at 226
nm

* 1-cm' bandwidth pumps multiple rotational
transitions

* Free-stream molecular velocimetry demonstrated
with a single laser pulse
» 40-kHz effective data rate
» 2D velocimetry possible in high-speed, low-

pressure regions?
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