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2 I Goal of our present work

1) Estimate effective seismic source attributes of underground
explosions
o Based on linear inversions

o Assume:
o Time variable seismic source functions
> Arbitrary numbers and locations of sources

o Jointly invert multiple datatypes

2) Questions we are asking
> Are elastic models strictly necessary?

> Do more data types increase accuracy or mitigate the effects of noise and/or
model uncertainty?

o Can we resolve time-varying source mechanisms?
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‘ Classical linear inversion: Moment Tensors |
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single point source
source function identical for all components of the MT

s(t) is the source function; assumed, a- low frequency wavefield insensitive to Earth heterogeneities

priori

- works pretty good for low frequency teleseismic and/or global scale data < ‘



s | Relax assumptions:

1) Multiple sources such as explosion, fault release, spall, etc.

u = (émexplosion) + (émspau) + ..

2) source functions can be independent and time variable

u = (G ® m;j(x1,tij) explosion) + (G @ m;;(x2,tij)spau) + -

3) several wavefield types (seismic, acoustic, rotational, etc. )

- Ugeismic
Uqgcoustic

L Urotational-

(Gseismic® mexpl) + (Gseismic® mspal[) + (Gseismic® mEQ) + ]
(Gseismic® mexpl) + (Gseismic® mgpau) + ..

! (Grot@® Mexpr) + (Grot@ Mmgg) + - ]



« 1 1) Multiple source types

* Experiment: Source Physics Experiment Phase |

» Data: locally (<5km) recorded Infrasound produced by buried chemical explosion

*  Source model: (buried) isotropic explosion and (surface) spall _ _

» Estimate Green’s functions using finite differences Uinfrasound = (GMexplosion) + (GMspau)
* constant wavespeed ACOUSTIC earth model
+ atmospheric model based on meteorological observations
* wave propagation is fully ACOUSTIC

* Invert for source time functions
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=1
{::W L
. sa sl e 2 —
oo & o =T _géggg estimated isotropic
£ mw«w—j&m-ww—-v—v-m—m—-—~— = | — source function
g i._..wwm_wrw\_ﬂmm__._____ _______ " \/ Explosion

A/ ) o I

74 L o i:ﬁ_::__..,__&“w_.__ww,__,_.,._u.____ 52100 :
A B ! e M:ZE& estimated spall
e - : wwmwﬂwwwmzﬁihww =9 —= source function

Langitude S
pall
0 2 4 6 B 10 2 14 @ o 05 1 1.8
Time {g) Time (s)

different colors correspond to
different atmospheric models

S — |
= i

Results / conclusions

1) Spall source “well behaved”, relatively insensitive to atmospheric model

2) Explosion source is a mess

3) Predicated data is almost totally controlled by spall term (suggests buried source term lives in the
null space for this setup)

«  Question: is this because spall is the primary driver of the infrasound OR is it because our
forward model doesn’t do a good job predicting the elastic part of the wavefield?

Poppeliers, C., K.A. Anderson, L. Preston, 2019, Bull. Seis. Soc. Am., 109(1), 463-475

fit to data (SPE 6)
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‘ 1) Multiple source types, fully elastic model

Experiment: Source Physics Experiment Dry Alluvium Geology (DAG)
« Data: locally (<3km) recorded Infrasound produced by buried chemical explosion
»  Source model: (buried) explosion and (surface) spall _ _ o
« Estimate Green’s functions using finite differences acoustic wavefield from seismic
»  Coupled elastic/acoustic model -to-acoustic coupling
* wave propagation is seismoacoustic
* Invert for source time functions (M;; and F;)

spall
simulated seismoacoustic source
wavefield )
explosion

1 BUV

recorded infrasound produced by a buried (z=-52m)

explosion: 10.4 metric tons (TNT equivalent) = 1400
(a) (b) ~= 1000

37.54

source

1800
1400
1000

37.

Latitude (°N)

1800
1400
1000

—2000  -1000 0 1000 2000
Distance from SGZ (m East)

Elevation above MSL (m

\j}\j( SGZ ® Wavespeed profile
@® Infrasound sensor

Longllude ¢ W)

Pressure (Pa) Above surtace x10"

-0.8 -04 ¢} 0.4 0.8
Below surface x1077

acoustic wavefield from spall

Berg, E., Poppeliers, C., 2022, BSSA 112(4), 2216-2230



Azimuth from SGZ (9)

s 1 1) Multiple source types, fully elastic model

1-4 Hz acoustograms
(trace normalized)
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inverted the data using three source models

1) buried explosion only
2) spall (F,) only
3) explosion + spall
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Berg, E., Poppeliers, C., 2022, BSSA 112(4), 2216-2230

observed and predicted data
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Results:

1) Buried, full-tensor source is
MUCH better resolved

2) explosion + spall model fits the
data the best, but...

3) Spall-only model still describes
most of the data, however...

4) Without spall source, the
isotropic portions of M;;
attempt to compensate

» M;; looks very CLVD-like

Conclusion:
There is A LOT of value in

using the full seismoacoustic
model when inverting IF data

produced by buried explosions

time after explosion (s)



9 ‘ Several Wavefield types .

« translational seismograms + rotational motions . - ‘ ; ! i
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* Previous methods estimated

M_xy M_xz M_yz
v

« scalar MT components (e.g. “beachball”) el s = ST

« PDFs of MT components via Bayesian methods (e.g. . | . i . i
Donner et al., 2016, 2020; Bernauer et al., 2014) ' g ‘

- misfit of all source mechanisms (e.g. Ichinose et al., e N L 2N L 2N

Donner, S., Bernauer, M., Igel, H., 2016, Geophys. J. Int., 207, 562-570

2019)

* Previous work suggested that adding rotational motions
helps to decrease uncertainty in scalar MTs (and hence
seismic mechanism) FOR LOW FREQUENCY TELESEISMIC
DATA

2015-02-09 Baja Mw 4.92 3-5ta3C
‘White Diamon
Highest %VR

r LY

* We extend this idea to estimate time-variable source
functions: o
» translation + rotational data

» high frequency explosion source data wf
» effects of model uncertainty .

Ichinose, G.A., Ford, S.R., Mellors, R.J, 2019,AGU Fall 2019 Meeting, S032



‘ Several Wavefield (data) types

inverse method Test with numerical experiments,

translational Effects of model uncertainty using Monte Carlo
/Green s functions (a) U A"
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Poppeliers, C., Preston, L., 2022, Geophys. J. Int., 230, 235-251



N ‘ Results: mixed

1) For “many” stations/channels, adding rotational
motions INcreased uncertainty of the results!

(b)
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2) However.... given a small number of stations, adding rotational
motions (at same location) decreases uncertainty. Likely due to
simply having more channels of data to invert.

) M“(l] s At UE | Mwm 3, MZZ(t}
>~ |=—8T kL
= =3T3

time (s) time {s) time (s)

Poppeliers, C., Preston, L., 2022, Geophys. J. Int., 230, 235-251

Rotational motions are more sensitive to model
heterogeneity, and thus uncertainty.
Theoretical combined radiation pattern of all
rotational motions (Aldridge, 2000) is virtually
identical to that of translational shear waves.

rotational
source = EQ

-

(a) translational (b)
source = EQ

—P
X —_—5
-- [ﬂ-JL + wy +-..-Z}

This is at odds with previous work based on
rotational radiation patterns given by Cochard et
al., (2006), eqgn 30.4, which predicts the
radiation patterns of these two datatypes to be
different: - combining two data types should
“fills in” holes in the radiation pattern.

Who’s right??




2 I Time variable source mechanisms

Current techniques to estimate source mechanism assume that the source is a point in space and time.
Too restrictive for low-yield, local scale data?

We’ve already developed methods to account for multiple sources and independence of source functions,
so let’s simply compute the mechanism as a function of time.
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i3 I Time variable source mechanisms

Concept:

1) estimate time-variable
source functions M;;(t),

2) extract amplitude at discrete
time points (or windows)
M;;(t =T;),

3) Decompose M;;(t =T;) to
obtain eigenvalues,

4) plot on a lune
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14 ‘ Time variable source mechanisms

Numerical test: Two sources, +120
offset in time: double couple
followed by isotropic.

Mxx T
In concept, we can combine time-
variable source function estimates VD .
into traditional source mechanism
estimates.
M2z
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s I Concluding remarks

1) We've successfully developed and implemented a linear inversion method that estimates
time-varying source functions for fully elastic Earth models and multiple source types

2) We can now combine multiple data types, such as translational seismic, acoustic, and
rotational motions into a joint inversion for source functions

3) We've developed a method to estimate time-varying source mechanisms based on the
inversion schemes in bullets 1 and 2

Questions we asked

Are elastic models strictly necessary?

—>no, but they give us more robust source estimates for buried explosions when using acoustic data

Do more data types increase accuracy or mitigate the effects of noise and/or model

uncertainty?

- No and Yes: for many stations and uncertain propagation models, adding rotational motions may
increase uncertainty;

- However, for a small number of stations, the additional rotational channels appears to decrease
uncertainty

Can we resolve time-varying source mechanisms?

- So far, it looks promising!
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