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Atomic Precision Advanced Manufacturing (APAM) e

APAM is a process of area-selective dopant incorporation at the atomic scale
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‘ STM = Scanning
R, Tunneling

Microscope

Si(100) ==y Si(100) Si(100)

H-terminated STM patterning P incorporation
surface with PH, precursor ~ at atomic scale

APAM is widely used for making qubits!]

which operate at cryogenic temperatures.
= Atomic precision P yog p

= Extremely high density of dopants

APAM key properties (vs. standard processing) <

Unique opportunity in microelectronic
from the atomic physical limit




Sandia APAM Achievements Toward Microelectronic e
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X. Gao, et al., Modeling Assisted Room
Temperature Operation of Atomic
Precision Advanced Manufacturing
Devices, presented at 2020 SISPAD.
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O APAM enabled VTFET [2] and bipolar devices




Automated Lattice-Aligned APAM Patterning ()

Zyvex Labs LLC developed tools for automated, lattice-aligned APAM patterning.

X bokes (7.7 nm)



APAM Enabled Bipolar Devices e,

First A:PAM bipolar device was published Goal of the Zyvex/Sandia collaboration project:
by T. Skeren et al. [3] —

N LA = Design and fabricate
] o e © working APAM pn
o e junction

= Explore the path to
design and fabricate

d
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3 (NDC) in the This work utilizes Charon TCAD simulations
200 ©) ® @ @ @) forward bias region to understand the operation of APAM bipolar

. devices and to facilitate their designs.
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APAM PN Junction Simulation: B Parameter Effect o

Laboratories

, Simulations were done using Charon,
Si cap, N, = 10" cm™3 20 nm

4 nm Cmﬁ‘/ an open-source TCAD code

developed at Sandia National Labs.

L n*t

https://chafon:sandia.gov/
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The B parameter,
a threshold field for
B2BT, shows a
dominant effect in
determining the
NDC peak current.

= $-doping = 3x10%°cm-3, to
produce 1.2x10'* cm2 as
in Skeren’s paper.

= Electron mobility was taken
from the paper.

= Band-to-band tunneling
(B2BT) is modeled as

B=8x10° V/cm
\
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B=1x107 V/cm
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APAM PN Junction Simulation: Determine Valley Voltage (@) &&..

Effect of band-to-trap tunneling (B2TT) on valley voltage

120

100
= 80 B2BT and B2BT and ,
= B2TT with B2TT with Band-to-trap tunneling
& o 1,=108s t,=10"s indeed significantly reduces
O N the valley voltage.
=
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APAM PN Junction Simulation: Determine Valley Voltage (@) &&..

Effect of band gap narrowing (BGN)
due to high doping on valley voltage

120 E. High delta-doping induced
$ BGN BGN can also reduce the
100 ‘E, Toon BGN=0 4 valley voltage.
— 80 Si Si:B delta  Si:P delta BGN=JO.3
< / | A combination of B2BT and
- H BGN effects may be
@ e0 _ responsible for the small
5 Experiment measured valley voltage.
O 40
20 The near-zero current
response for voltages < 0.2V
0 needs further study.
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APAM PN Junction Simulation: Reverse Response
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Band-to-band tunneling with
an adjustable field parameter
can model the main feature of
the measured reverse |-V
response.

TCAD simulation with B2BT
is able to capture the main
features of APAM PN |-V
responses.



APAM PN Junction Simulation: Gap Width Dependence (&) ..
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How does a controlled gap
between two delta layers affect
the |-V response?

Forward |-V response
depends significantly on
the gap width.

When the gap is 4 nm or
larger, the NDC behavior is
diminished.




Fabrication of APAM PN with Variable Gap Width o

Laboratories

130 px =100 nm
10 px=7.68n

STM image
I.Ir' ""-. ." ' i . 'ﬁ; Ny PS{: | 'H':'r v,
0 | ril : . ¥ I'||| "I
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APAM PN junctions with variable
gap widths are being fabricated
to experimentally verified the
effect of gap width.
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Summary .

d Charon TCAD simulations with B2BT and B2TT
was shown to capture the main features of
APAM PN |-V responses.

CHARON

d Modeling results of gap width effect on APAM PN
junction response motivated the experimental T gap nt
design of PN junctions with various gap widths.

d Future work: model potential APAM BJT designs —
and explore parameter space in search of good BJT 231 nen
performance; compare simulation results with
experimental data when available.




