National
Laboratories

is. jectivelvi ini hatmightibetexpressed)inl 6638C
U.S JDepartment]oflEnergylorthelUnitediStatesgGovernment.,
@ andia

Q: A Sound Verification Framework for Statecharts and

Their Implementations

Samuel D Pollard Robert C. Armstrong, John Bender, Geoffrey C. Hulette,

el S. Mahmood, Karla Morris, Blake C. Rawlin fzs Jon M. Aytac
Formal Techmques for Safety-Critical Systems, 7 December 2022, Auckland, NZ

dia National Laboratories is a multimission laboratory managed and operated;by,National Technology.&.Engineering.Solutions -of.Sandia,,LLC, a wholly ow
Ubsmlarx,of HoneyweII)InternatlonaI Inc., for the U.S. Department offEnergy'siNationalcNuclearsSecuritysAdministrationfunder-contractDE-NA0003525.
_

Introduction

Motivation

m Sandia National Labs is a US government research & development center
m Sandia develops software for high-consequence embedded control systems
m The cost for errors is very high

m Design features:

m Asynchronous interacting components (e.g., across a bus)
m Requirements documents in English and informal diagrams
m Modeled in MATLAB Stateflow as an abstract model

m Implemented in C

m From these, we require proofs of system-level properties.

Overview

m Sandia has the fortune of strong control over structure of C programs, hardware
interface, and interaction with software developers and system engineers

m Long history of verification of models (e.g., TLA, SMV) and of implementations
directly (e.g., SLAM [3]).

m However, existing research does not support compositional reasoning of state
machines while also providing refinement proofs into C

m We developed Q Framework to address this gap and provide (mostly) automated
refinement proofs

Stucture of This Presentation

1. Provide overview of Q Framework, piece by piece
m Use a running example of a “secure coffee maker”

2. Describe our refinement argument between temporal properties of state charts
and Frama-C [4] proof obligations

3. Give overview of our formalization of Q Framework in Coq

4. Related work, future work, conclusion

Architecture

Overview

LTL, CTL
Properties

Stateflow
Models

Stateflow

Test Case Counter-
T example

QSpeckler —»

obeys style m Blue .text
't 4 Sandia-developed
@ QLang SMV m Double-struck
require manual
QFact writing or
spec|fy UB IE“SMV enforcement
Frama-C
(+ back-ends)
¥
Proof? SAT?

Stateflow

Stateflow
Models
[

Coffee Maker in Stateflow

coffee_maker || View All k]
]
(S} simple_coffee » T coffee_maker - Q g
5
2
! g
System g
’Brewer N\
i [confirmed]
Ready coin] Confirm] Horew oy
[~confirmed... [brew < 2]
[~confirmed)] &&brew <2] 3 Kbrew = brew +1;}
[brew == 2]
Kbrew = 0;}
\ 1
’Paymsnt 74
\dle [confirmed] (paig
[coin]
» Y, 0
.,

Coffee Maker in Stateflow (Zoomed)

coffee_maker |_| View All |
@ | [Pa] simple_coffee b T3 coffee_maker - Q
|
@ I
Ready . Confirm [confirmed] (Brewing
[coin] Kbrew = 0;}
e —— L ———
[~confirmed... [orew < 2]
[~confirmed] && brew < 2] - Kbrew = brew +1;}
- A | >
-/
[brew == 2]
Kbrew = 0;}
=S 2
) -/

Joy0adsu] Apadoid

Coffee Maker State Machine

coin confirmed, brew := 0

start brew < 2,

brew += 1

brew:=0

start _» confirmed @

coin

m Coffee maker with confirm
and cancel buttons

m “payment” system which
continuously pays and presses
“confirm.”

11

LTL/CTL

LTL, CTL
Properties

12

LTL/CTL

coin

confirmed, brew := 0

brew:=0

brew < 2,
brew += 1

m Write properties based on
requirements docs

m Example safety condition in
CTL:

m AG !(state = confirm &
brew = 2)

m The coffee maker should
not be “confirmed” after
coffee is done brewing

m We support LTL and CTL
because NuSMV does

13

QSpec and QSpeckler

Stateflow
Test Case Counter-
~_ example

—| QSpeckler

14

QSpec and QSpeckler

m QSpec inspired by SCXML

m QSpec files (right) aren’t written by
hand

m QSpeckler translates from Stateflow
into QSpec
m QSpeckler understands MATLAB
m Can generate a Stateflow test case
from an SMV counterexample

m QLang handles the translation into
an SMV model

<?xml version="1.0" encoding="UTF-8"7>
<gspec> </-- initialization —-->
<state id="System">
<parallel>
<sequential>
<initial> </-- ... --> </initial>
<state id="Brewing">
<transition label="Brewing_Brewing"
target="Brewing">
<guard name="check_brewing"
predicate="(< brew 2)"/>
<assign location="brew"
expr="(+ brew 1)"/>
</transition>
<!I-- ... more states -->
</sequential>
<parallel>
</state>
</qspec>

C Implementation

~_—
\/O

beys style

oD

| —| 7

16

C Coding Standards m

m Q Framework expects a restricted

subset of C
m Must be able to map from /%@

Stateflow to C requires \valid(unsigned char volatile *v);
m Separate all hardware access requires fgetC == v;

(memory-mapped 1/0 or volatile ensures obs_t == \Old(Obs—t) + 1

variables) into function calls ensures \result \in (0 .. 255);

ensures \result <==>

m Axiomatize the hardware FgetCObs (obs_at (\old(obs_ £)));

behavior
m These specifications are written “/
in Frama-C uint8_t *volatile_load_uint8_t_(uint8_t *v);

m These are used for our soundness
argument

17

QLang

Counter-
example

~ 4
Qlang - SMV
\ 1
lspecify UB l NuSMV

Frama-C
(+ back-ends)
\

Proof? SAT?

18

QLang

m Input
1. QSpec (including the desired temporal properties)
2. C program written in a constrained style
3. Simulation map between Stateflow and C variables
m Output

1. “flattened” SMV model
2. C header file with ANSI C Specification Language (ACSL) annotations

m These are the proof obligations to be proven by Frama-C
m QLang has several back-ends
m The most interesting being SMV, but also, e.g., one for visualization

19

Flattening

CLIENT c_call c_receive SERVER s_request s_service
m A flattened state chart has no nesting
o c_continue s_repl
or parallel composition o >
m Benefit: simple implementation 1

m Concern: Exponential increase in size
of model
m Can pass onto NuSMV; in practice
thiS sometimes helps CLIENT_SERVER
m Future work to address this (e.g.,
assume-guarantee reasoning)

o call

20

QFact

[QFct]-
speci

21

QFact

m Clang tool which annotates a C program with its ACSL specification

m Why is this necessary?

22

QFact

m Clang tool which annotates a C program with its ACSL specification
m Why is this necessary?

m C semantics are complex

m Lots of implementation-defined, unspecified, and undefined behavior
m e.g., evaluation order of function arguments

m Our trick: Convert from C — Clight, then back to C
m Fortunately, CompCert has such a forward translation; we modify it do the reverse

22

QWorkflow

LTL, CTL
Properties

Stateflow
Models

Stateflow

Test Case Counter-
T example

QSpeckler —»

obeys style
QFact
specn‘y UB IEUSMV
Frama-C
(+ back-ends)
¥

Proof? SAT?

23

QWorkflow

m Orchestrate all the moving parts
m Provide:

m Requirements documents (Microsoft Word, Visio)
Each requirement in the Word document has identifier
Stateflow model

C code

m Runs analysis, generates counterexample (if available), and links the status of
each requirement to whether its proof completed in Frama-C and NuSMV

24

Design

25

The Goal of Q Framework, Restated

m Prove system-level temporal properties

1. Prove the temporal properties hold for QSpecs
2. Prove a given C program implements (refines) a component of the QSpec

m 1. is done by encoding QSpec model as SMV, then using NuSMV
m We next describe 2.
m Generate ACSL function contracts
Use Frama-C to prove the C implements these contracts
Carefully chose our notions of refinement (model — C) and composition
With these, any properties we prove of the QSpec also hold for C implementation

26
BN

Ghost State

m Observations within a function call may
not be observable to Frama-C, but are
observable behavior to C semantics

m Solve this with ghost state

m Frama-C annotation to describe whenever
the ghost state changes

Frama-C specification:

/*@
ghost int obs_t;
aziomatic model {
type obs;
logic obs obs_at(integer t);
logic uint8_ t fgetCObs (obs o);
}o*/

volatile uint8_t fgetCVal;
In Clight, use pointer fgetC:

H$1 = volatile_load_uint8_t_(fgetC);

27

Weak Simulation

—Q

OQ > P(SQ X SQ)

%?’[ROQJl C l“b[RsQ]
P(GhostState) =T P(ProgState x ProgState)

Q is the abstract model (QSpec)
Pc is the concrete implementation (C program)
¢ is a JSON file relating Stateflow variables to predicates over C variables.

— @ is a Galois connection between Og and P(Sg X Sg)

This demonstrates a proof of weak simulation, provided we can think of P¢ as a
transition system: this is not trivial when considering C semantics

28

Weak Simulation

Observables in the LTS @

OQ A > P(SQ X SQ)

?lRog,] c l¢[RSQ]

P(GhostState) =T P(ProgState x ProgState)

Q is the abstract model (QSpec)
Pc is the concrete implementation (C program)
¢ is a JSON file relating Stateflow variables to predicates over C variables.

— @ is a Galois connection between Og and P(Sg X Sg)

This demonstrates a proof of weak simulation, provided we can think of P¢ as a
transition system: this is not trivial when considering C semantics

28

Weak Simulation Transition
relation of @

%?’[ROQJl

P(GhostState) =T P(ProgState x ProgState)

Q is the abstract model (QSpec)
Pc is the concrete implementation (C program)
¢ is a JSON file relating Stateflow variables to predicates over C variables.

— @ is a Galois connection between Og and P(Sg X Sg)

This demonstrates a proof of weak simulation, provided we can think of P¢ as a
transition system: this is not trivial when considering C semantics

28

.) P .
Weak Simulation roperties over m

states in @

OQ >

%?’[ROQJl

P(GhostState) =T P(ProgState x ProgState)

0

Q is the abstract model (QSpec)
Pc is the concrete implementation (C program)
¢ is a JSON file relating Stateflow variables to predicates over C variables.

— @ is a Galois connection between Og and P(Sg X Sg)

This demonstrates a proof of weak simulation, provided we can think of P¢ as a
transition system: this is not trivial when considering C semantics

28

Weak Simulation

Frama-C @ghost

> P(SQ X SQ)

l@[RsQJ

(ProgState x ProgState)

Pc is the concrete implementation (C program)
¢ is a JSON file relating Stateflow variables to predicates over C variables.

— @ is a Galois connection between Og and P(Sg X Sg)

This demonstrates a proof of weak simulation, provided we can think of P¢ as a
transition system: this is not trivial when considering C semantics

28

Weak Simulation

C program state
transformer semantics

OQ > P Q X SQ)
%?’[ROQJl - lﬂb[RsQJ
P(GhostState) P(ProgState x ProgState)

—Q

Q is the abstract model (QSpec)
Pc is the concrete implementation (C program)
¢ is a JSON file relating Stateflow variables to predicates over C variables.

— @ is a Galois connection between Og and P(Sg X Sg)

This demonstrates a proof of weak simulation, provided we can think of P¢ as a
transition system: this is not trivial when considering C semantics

28

Weak Simulation

Predicates over

o » P(So % Sq) C program state

%?’[ROQJl

P(GhostState) =T P(ProgStat

0

Q is the abstract model (QSpec)
Pc is the concrete implementation (C program)
¢ is a JSON file relating Stateflow variables to predicates over C variables.

— @ is a Galois connection between Og and P(Sg X Sg)

transition system: this is not trivial when considering C semantics

This demonstrates a proof of weak simulation, provided we can think of P¢ as a

28

Refinement m

m Above: Composition in
the model with an LTS
with a single state 1

m Below: Composition in
the C program with an
environment for volatiles

volatile

environment
async

Pc

29

Coqg Formalization

30

Coq Formalization

m Have semantics of state
charts in Coq

m Model of what we've
implemented in Q
Framework

m Also provide notion of
refinement between two
state charts

(* S is State
E is environment (model wars) *)
Record Machine :=
{ m_initial : (S * E) -> Prop;
m_terminal : (S * E) -> Prop;
m_inner : S -> E -> E -> Prop;
m_step : (S * E) -> (S * E) -> Prop
+.
Inductive Chart
| Unit : Chart
| Par : Chart -> Chart -> Chart
| Nest : Machine ->
(8 -> Chart) -> Chart.

31

Example: Must Go

Theorem gspec_must_go_ind :
forall gchart qgspec data
cfgl cfg2 envl env2,
qchart = semantics gspec data
-> chart_step
qchart
(cfgl, envl)
(cfg2, env2)
-> chart_step_pred
must_go_pred qchart
(cfgl, envl)
(cfg2, env2).

m Informally, if a top level state
machine can step from A — B,
then it should guarantee that we
cannot go from A — A as an
inner step.

m Open question: If Q implements
this spec correctly (the same
question that most compilers
havel)

32

Conclusion

33

Related Work

m DeepSpec project and the Verified Software Toolchain (VST)

m strongest assurance arguments
m a full program logic for C
m time-intensive

m Modeling with eventB [1], SMT, TLA+

m Trillium [5]: Coq proof of refinement between TLA+ specs and a DSL for
specifying concurrent systems, AnerisLang

34

Future Work

Actions back-end: multiple observables per function call

Size of flattened QSpec model causes scalability concerns

Modularity of (Stateflow) design should allow some modular reasoning

m Plan to add support for assume-guarantee, circular assume-guarantee reasoning for
Q Framework

Less restrictions on C code implementations

Automatically generate some ACSL specs, especially for pure functions
m To this effect, use Verified Software Toolchain's (VST) [2] symbolic executor

35

Conclusion m

m Q Framework allows us to build compositional reasoning, and provides evidence
that a C implementation refines a given state machine model

m Q has rather strict limitations on the structure of the C
m Future work of “One Q.E.D.”

m Not open source, but examples can be found here:
https://github.com/sampollard/q-supplement

36

https://github.com/sampollard/q-supplement

References | m

[1]

2]

(3]

[4]

ABRIAL, J.-R., BUTLER, M., HALLERSTEDE, S., HoANG, T. S., MEHTA, F., AND VOISIN, L.
Rodin: an open toolset for modelling and reasoning in Event-B.
International Journal on Software Tools for Technology Transfer 12, 6 (2010), 447-466.

APPEL, A. W.

Verified software toolchain.

In Proceedings of the 20th European Conference on Programming Languages and Systems (Saarbriicken,
Germany, Mar. 2011), ESOP/ETAPS (LNCS 6602), Springer-Verlag, pp. 1-17.

BaLr, T., Cook, B., LEVIN, V., AND RajaMANI, S. K.
Slam and static driver verifier: Technology transfer of formal methods inside microsoft.
In Integrated Formal Methods (Berlin, Heidelberg, 2004), Springer Berlin Heidelberg, pp. 1-20.

CuoQ, P., KIRCHNER, F., KosMATOV, N., PREVOSTO, V., SIGNOLES, J., AND YAKOBOWSKI, B.
Frama-c.

In Software Engineering and Formal Methods (Thessaloniki, Greece, Oct. 2012), SEFM (LNCS 7504),
Springer, pp. 233-247.

TIMANY, A., GREGERSEN, S. O., STEFANESCO, L., GONDELMAN, L., NIETO, A., AND BIRKEDAL, L.
Trillium: Unifying refinement and higher-order distributed separation logic.

arXiv, Sept. 2021.

Available at https://arxiv.org/abs/2109.07863.

37

https://arxiv.org/abs/2109.07863

	Introduction
	Architecture
	Design
	Coq Formalization
	Conclusion
	Appendix

