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Motivation

Sandia National Labs is a US government research & development center
Sandia develops software for high-consequence embedded control systems
The cost for errors is very high
Design features:

Asynchronous interacting components (e.g., across a bus)
Requirements documents in English and informal diagrams
Modeled in MATLAB Stateflow as an abstract model
Implemented in C

From these, we require proofs of system-level properties.
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Overview

Sandia has the fortune of strong control over structure of C programs, hardware
interface, and interaction with software developers and system engineers
Long history of verification of models (e.g., TLA, SMV) and of implementations
directly (e.g., SLAM [3]).
However, existing research does not support compositional reasoning of state
machines while also providing refinement proofs into C
We developed Q Framework to address this gap and provide (mostly) automated
refinement proofs
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Stucture of This Presentation

1. Provide overview of Q Framework, piece by piece
Use a running example of a “secure coffee maker”

2. Describe our refinement argument between temporal properties of state charts
and Frama-C [4] proof obligations

3. Give overview of our formalization of Q Framework in Coq
4. Related work, future work, conclusion
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Coffee Maker in Stateflow
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Coffee Maker in Stateflow (Zoomed)
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Coffee Maker State Machine
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LTL/CTL

Ready
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start

Write properties based on
requirements docs
Example safety condition in
CTL:

AG !(state = confirm &
brew = 2)
The coffee maker should
not be “confirmed” after
coffee is done brewing

We support LTL and CTL
because NuSMV does
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QSpec and QSpeckler

Stateflow
Models

LTL, CTL
Properties

C Source

QSpeckler

Stateflow
Test Case

QSpec

QLang

Counter-
example

ACSL

SMV

QFact

Annot.
C

Frama-C
(+ back-ends)

NuSMV

Proof? SAT?

obeys style

specify UB

14



QSpec and QSpeckler

QSpec inspired by SCXML
QSpec files (right) aren’t written by
hand
QSpeckler translates from Stateflow
into QSpec
QSpeckler understands MATLAB

Can generate a Stateflow test case
from an SMV counterexample
QLang handles the translation into
an SMV model

<?xml version="1.0" encoding="UTF-8"?>
<qspec> <!-- initialization -->
<state id="System">
<parallel>
<sequential>
<initial> <!-- ... --> </initial>
<state id="Brewing">
<transition label="Brewing_Brewing"

target="Brewing">
<guard name="check_brewing"
predicate="(< brew 2)"/>
<assign location="brew"
expr="(+ brew 1)"/>

</transition>
<!-- ... more states -->

</sequential>
<parallel>

</state>
</qspec>
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C Implementation
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C Coding Standards

Q Framework expects a restricted
subset of C
Must be able to map from
Stateflow to C
Separate all hardware access
(memory-mapped I/O or volatile
variables) into function calls

Axiomatize the hardware
behavior
These specifications are written
in Frama-C

These are used for our soundness
argument

/*@
requires \valid(unsigned char volatile *v);
requires fgetC == v;
ensures obs_t == \old(obs_t) + 1;
ensures \result \in (0 .. 255);
ensures \result <==>
fgetCObs(obs_at(\old(obs_t)));

*/
uint8_t *volatile_load_uint8_t_(uint8_t *v);
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QLang
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QLang

Input
1. QSpec (including the desired temporal properties)
2. C program written in a constrained style
3. Simulation map between Stateflow and C variables

Output
1. “flattened” SMV model
2. C header file with ANSI C Specification Language (ACSL) annotations

These are the proof obligations to be proven by Frama-C
QLang has several back-ends

The most interesting being SMV, but also, e.g., one for visualization
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Flattening

A flattened state chart has no nesting
or parallel composition
Benefit: simple implementation
Concern: Exponential increase in size
of model

Can pass onto NuSMV; in practice
this sometimes helps
Future work to address this (e.g.,
assume-guarantee reasoning)

↓
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QFact

Stateflow
Models

LTL, CTL
Properties

C Source

QSpeckler

Stateflow
Test Case

QSpec

QLang

Counter-
example

ACSL

SMV

QFact

Annot.
C

Frama-C
(+ back-ends)

NuSMV

Proof? SAT?

obeys style

specify UB

21



QFact

Clang tool which annotates a C program with its ACSL specification
Why is this necessary?

C semantics are complex
Lots of implementation-defined, unspecified, and undefined behavior
e.g., evaluation order of function arguments

Our trick: Convert from C → Clight, then back to C
Fortunately, CompCert has such a forward translation; we modify it do the reverse
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QWorkflow
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QWorkflow

Orchestrate all the moving parts
Provide:

Requirements documents (Microsoft Word, Visio)
Each requirement in the Word document has identifier
Stateflow model
C code

Runs analysis, generates counterexample (if available), and links the status of
each requirement to whether its proof completed in Frama-C and NuSMV
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The Goal of Q Framework, Restated

Prove system-level temporal properties
1. Prove the temporal properties hold for QSpecs
2. Prove a given C program implements (refines) a component of the QSpec

1. is done by encoding QSpec model as SMV, then using NuSMV
We next describe 2.

Generate ACSL function contracts
Use Frama-C to prove the C implements these contracts
Carefully chose our notions of refinement (model → C) and composition
With these, any properties we prove of the QSpec also hold for C implementation
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Ghost State

Observations within a function call may
not be observable to Frama-C, but are
observable behavior to C semantics
Solve this with ghost state
Frama-C annotation to describe whenever
the ghost state changes

Frama-C specification:

/*@
ghost int obs_t;
axiomatic model {
type obs;
logic obs obs_at(integer t);
logic uint8_t fgetCObs(obs o);

} */
volatile uint8_t fgetCVal;

In Clight, use pointer fgetC:

$1 = volatile_load_uint8_t_(fgetC);
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Weak Simulation

OQ P(SQ × SQ)

P(GhostState) P(ProgState× ProgState)

ϕ̂[ROQ
]

→Q

ϕ̂[RSQ
]⊆

→PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
ϕ̂ is a JSON file relating Stateflow variables to predicates over C variables.
→Q is a Galois connection between OQ and P(SQ × SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics
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C program state
transformer semantics
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Weak Simulation
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Refinement

1OQQ

PC
volatile

environment

async

async

�weak

obs1 ... obsn Above: Composition in
the model with an LTS
with a single state 1
Below: Composition in
the C program with an
environment for volatiles
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Coq Formalization

Have semantics of state
charts in Coq
Model of what we’ve
implemented in Q
Framework
Also provide notion of
refinement between two
state charts

(* S is State
E is environment (model vars) *)

Record Machine :=
{ m_initial : (S * E) -> Prop;
m_terminal : (S * E) -> Prop;
m_inner : S -> E -> E -> Prop;
m_step : (S * E) -> (S * E) -> Prop

}.
Inductive Chart :=
| Unit : Chart
| Par : Chart -> Chart -> Chart
| Nest : Machine ->
(S -> Chart) -> Chart.
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Example: Must Go

Theorem qspec_must_go_ind :
forall qchart qspec data

cfg1 cfg2 env1 env2,
qchart = semantics qspec data
-> chart_step

qchart
(cfg1, env1)
(cfg2, env2)

-> chart_step_pred
must_go_pred qchart
(cfg1, env1)
(cfg2, env2).

Informally, if a top level state
machine can step from A → B,
then it should guarantee that we
cannot go from A → A as an
inner step.
Open question: If Q implements
this spec correctly (the same
question that most compilers
have!)
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Related Work

DeepSpec project and the Verified Software Toolchain (VST)
strongest assurance arguments
a full program logic for C
time-intensive

Modeling with eventB [1], SMT, TLA+
Trillium [5]: Coq proof of refinement between TLA+ specs and a DSL for
specifying concurrent systems, AnerisLang
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Future Work

Actions back-end: multiple observables per function call
Size of flattened QSpec model causes scalability concerns
Modularity of (Stateflow) design should allow some modular reasoning

Plan to add support for assume-guarantee, circular assume-guarantee reasoning for
Q Framework

Less restrictions on C code implementations
Automatically generate some ACSL specs, especially for pure functions

To this effect, use Verified Software Toolchain’s (VST) [2] symbolic executor
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Conclusion

Q Framework allows us to build compositional reasoning, and provides evidence
that a C implementation refines a given state machine model
Q has rather strict limitations on the structure of the C
Future work of “One Q.E.D.”
Not open source, but examples can be found here:
https://github.com/sampollard/q-supplement
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