
Q: A Sound Verification Framework for Statecharts and
Their Implementations

Samuel D. Pollard Robert C. Armstrong, John Bender, Geoffrey C. Hulette,
Raheel S. Mahmood, Karla Morris, Blake C. Rawlings, Jon M. Aytac

Formal Techniques for Safety-Critical Systems, 7 December 2022, Auckland, NZ

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-NA0003525. SAND No. ZZZZZZZZZZ-ZZZZ

SAND2022-16638CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Introduction

Architecture

Design

Coq Formalization

Conclusion

2

Motivation

Sandia National Labs is a US government research & development center
Sandia develops software for high-consequence embedded control systems
The cost for errors is very high
Design features:

Asynchronous interacting components (e.g., across a bus)
Requirements documents in English and informal diagrams
Modeled in MATLAB Stateflow as an abstract model
Implemented in C

From these, we require proofs of system-level properties.

3

Overview

Sandia has the fortune of strong control over structure of C programs, hardware
interface, and interaction with software developers and system engineers
Long history of verification of models (e.g., TLA, SMV) and of implementations
directly (e.g., SLAM [3]).
However, existing research does not support compositional reasoning of state
machines while also providing refinement proofs into C
We developed Q Framework to address this gap and provide (mostly) automated
refinement proofs

4

Stucture of This Presentation

1. Provide overview of Q Framework, piece by piece
Use a running example of a “secure coffee maker”

2. Describe our refinement argument between temporal properties of state charts
and Frama-C [4] proof obligations

3. Give overview of our formalization of Q Framework in Coq
4. Related work, future work, conclusion

5

Introduction

Architecture

Design

Coq Formalization

Conclusion

6

Overview

Stateflow
Models

LTL, CTL
Properties

C Source

QSpeckler

Stateflow
Test Case

QSpec

QLang

Counter-
example

ACSL

SMV

QFact

Annot.
C

Frama-C
(+ back-ends)

NuSMV

Proof? SAT?

obeys style

specify UB

Blue text
Sandia-developed
Double-struck
require manual
writing or
enforcement

7

Stateflow

Stateflow
Models

LTL, CTL
Properties

C Source

QSpeckler

Stateflow
Test Case

QSpec

QLang

Counter-
example

ACSL

SMV

QFact

Annot.
C

Frama-C
(+ back-ends)

NuSMV

Proof? SAT?

obeys style

specify UB

8

Coffee Maker in Stateflow

System

Payment

PaidIdle [confirmed]

[coin]

2

Brewer

ConfirmReady Brewing

[~confirmed]
2

[~confirmed...
&& brew < 2]

1

[brew < 2]
/{brew = brew +1;}

3

[confirmed]
/{brew = 0;}

1
[coin]

[brew == 2]
/{brew = 0;}

2

1

simple_coffee coffee_maker

coffee_maker View All Property Inspector

9

Coffee Maker in Stateflow (Zoomed)

BrewingConfirmReady

[brew == 2]
/{brew = 0;}

2

[~confirmed]
2

[brew < 2]
/{brew = brew +1;}

3

[confirmed]
/{brew = 0;}

1
[coin]

[~confirmed...
&& brew < 2]

1

simple_coffee coffee_maker

coffee_maker View All Property Inspector

10

Coffee Maker State Machine

Ready
Confirm

Brewing

coin

!confirmed

brew:=0

confirmed, brew := 0

!confirmed,
brew < 2

brew < 2,
brew += 1

start

Idlestart Paidconfirmed

coin

Coffee maker with confirm
and cancel buttons
“payment” system which
continuously pays and presses
“confirm.”

11

LTL/CTL

Stateflow
Models

LTL, CTL
Properties

C Source

QSpeckler

Stateflow
Test Case

QSpec

QLang

Counter-
example

ACSL

SMV

QFact

Annot.
C

Frama-C
(+ back-ends)

NuSMV

Proof? SAT?

obeys style

specify UB

12

LTL/CTL

Ready
Confirm

Brewing

coin

!confirmed

brew:=0

confirmed, brew := 0

!confirmed,
brew < 2

brew < 2,
brew += 1

start

Write properties based on
requirements docs
Example safety condition in
CTL:

AG !(state = confirm &
brew = 2)
The coffee maker should
not be “confirmed” after
coffee is done brewing

We support LTL and CTL
because NuSMV does

13

QSpec and QSpeckler

Stateflow
Models

LTL, CTL
Properties

C Source

QSpeckler

Stateflow
Test Case

QSpec

QLang

Counter-
example

ACSL

SMV

QFact

Annot.
C

Frama-C
(+ back-ends)

NuSMV

Proof? SAT?

obeys style

specify UB

14

QSpec and QSpeckler

QSpec inspired by SCXML
QSpec files (right) aren’t written by
hand
QSpeckler translates from Stateflow
into QSpec
QSpeckler understands MATLAB

Can generate a Stateflow test case
from an SMV counterexample
QLang handles the translation into
an SMV model

<?xml version="1.0" encoding="UTF-8"?>
<qspec> <!-- initialization -->
<state id="System">
<parallel>
<sequential>
<initial> <!-- ... --> </initial>
<state id="Brewing">
<transition label="Brewing_Brewing"

target="Brewing">
<guard name="check_brewing"
predicate="(< brew 2)"/>
<assign location="brew"
expr="(+ brew 1)"/>

</transition>
<!-- ... more states -->

</sequential>
<parallel>

</state>
</qspec>

15

C Implementation

Stateflow
Models

LTL, CTL
Properties

C Source

QSpeckler

Stateflow
Test Case

QSpec

QLang

Counter-
example

ACSL

SMV

QFact

Annot.
C

Frama-C
(+ back-ends)

NuSMV

Proof? SAT?

obeys style

specify UB

16

C Coding Standards

Q Framework expects a restricted
subset of C
Must be able to map from
Stateflow to C
Separate all hardware access
(memory-mapped I/O or volatile
variables) into function calls

Axiomatize the hardware
behavior
These specifications are written
in Frama-C

These are used for our soundness
argument

/*@
requires \valid(unsigned char volatile *v);
requires fgetC == v;
ensures obs_t == \old(obs_t) + 1;
ensures \result \in (0 .. 255);
ensures \result <==>
fgetCObs(obs_at(\old(obs_t)));

*/
uint8_t *volatile_load_uint8_t_(uint8_t *v);

17

QLang

Stateflow
Models

LTL, CTL
Properties

C Source

QSpeckler

Stateflow
Test Case

QSpec

QLang

Counter-
example

ACSL

SMV

QFact

Annot.
C

Frama-C
(+ back-ends)

NuSMV

Proof? SAT?

obeys style

specify UB

18

QLang

Input
1. QSpec (including the desired temporal properties)
2. C program written in a constrained style
3. Simulation map between Stateflow and C variables

Output
1. “flattened” SMV model
2. C header file with ANSI C Specification Language (ACSL) annotations

These are the proof obligations to be proven by Frama-C
QLang has several back-ends

The most interesting being SMV, but also, e.g., one for visualization

19

Flattening

A flattened state chart has no nesting
or parallel composition
Benefit: simple implementation
Concern: Exponential increase in size
of model

Can pass onto NuSMV; in practice
this sometimes helps
Future work to address this (e.g.,
assume-guarantee reasoning)

↓

20

QFact

Stateflow
Models

LTL, CTL
Properties

C Source

QSpeckler

Stateflow
Test Case

QSpec

QLang

Counter-
example

ACSL

SMV

QFact

Annot.
C

Frama-C
(+ back-ends)

NuSMV

Proof? SAT?

obeys style

specify UB

21

QFact

Clang tool which annotates a C program with its ACSL specification
Why is this necessary?

C semantics are complex
Lots of implementation-defined, unspecified, and undefined behavior
e.g., evaluation order of function arguments

Our trick: Convert from C → Clight, then back to C
Fortunately, CompCert has such a forward translation; we modify it do the reverse

22

QFact

Clang tool which annotates a C program with its ACSL specification
Why is this necessary?
C semantics are complex

Lots of implementation-defined, unspecified, and undefined behavior
e.g., evaluation order of function arguments

Our trick: Convert from C → Clight, then back to C
Fortunately, CompCert has such a forward translation; we modify it do the reverse

22

QWorkflow

Stateflow
Models

LTL, CTL
Properties

C Source

QSpeckler

Stateflow
Test Case

QSpec

QLang

Counter-
example

ACSL

SMV

QFact

Annot.
C

Frama-C
(+ back-ends)

NuSMV

Proof? SAT?

obeys style

specify UB

23

QWorkflow

Orchestrate all the moving parts
Provide:

Requirements documents (Microsoft Word, Visio)
Each requirement in the Word document has identifier
Stateflow model
C code

Runs analysis, generates counterexample (if available), and links the status of
each requirement to whether its proof completed in Frama-C and NuSMV

24

Introduction

Architecture

Design

Coq Formalization

Conclusion

25

The Goal of Q Framework, Restated

Prove system-level temporal properties
1. Prove the temporal properties hold for QSpecs
2. Prove a given C program implements (refines) a component of the QSpec

1. is done by encoding QSpec model as SMV, then using NuSMV
We next describe 2.

Generate ACSL function contracts
Use Frama-C to prove the C implements these contracts
Carefully chose our notions of refinement (model → C) and composition
With these, any properties we prove of the QSpec also hold for C implementation

26

Ghost State

Observations within a function call may
not be observable to Frama-C, but are
observable behavior to C semantics
Solve this with ghost state
Frama-C annotation to describe whenever
the ghost state changes

Frama-C specification:

/*@
ghost int obs_t;
axiomatic model {
type obs;
logic obs obs_at(integer t);
logic uint8_t fgetCObs(obs o);

} */
volatile uint8_t fgetCVal;

In Clight, use pointer fgetC:

$1 = volatile_load_uint8_t_(fgetC);

27

Weak Simulation

OQ P(SQ × SQ)

P(GhostState) P(ProgState× ProgState)

ϕ̂[ROQ
]

→Q

ϕ̂[RSQ
]⊆

→PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
ϕ̂ is a JSON file relating Stateflow variables to predicates over C variables.
→Q is a Galois connection between OQ and P(SQ × SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

28

Weak Simulation

OQ P(SQ × SQ)

P(GhostState) P(ProgState× ProgState)

ϕ̂[ROQ
]

→Q

ϕ̂[RSQ
]⊆

→PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
ϕ̂ is a JSON file relating Stateflow variables to predicates over C variables.
→Q is a Galois connection between OQ and P(SQ × SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

Observables in the LTS Q

28

Weak Simulation

OQ P(SQ × SQ)

P(GhostState) P(ProgState× ProgState)

ϕ̂[ROQ
]

→Q

ϕ̂[RSQ
]⊆

→PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
ϕ̂ is a JSON file relating Stateflow variables to predicates over C variables.
→Q is a Galois connection between OQ and P(SQ × SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

Transition
relation of Q

28

Weak Simulation

OQ P(SQ × SQ)

P(GhostState) P(ProgState× ProgState)

ϕ̂[ROQ
]

→Q

ϕ̂[RSQ
]⊆

→PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
ϕ̂ is a JSON file relating Stateflow variables to predicates over C variables.
→Q is a Galois connection between OQ and P(SQ × SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

Properties over
states in Q

28

Weak Simulation

OQ P(SQ × SQ)

P(GhostState) P(ProgState× ProgState)

ϕ̂[ROQ
]

→Q

ϕ̂[RSQ
]⊆

→PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
ϕ̂ is a JSON file relating Stateflow variables to predicates over C variables.
→Q is a Galois connection between OQ and P(SQ × SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

Frama-C @ghost

28

Weak Simulation

OQ P(SQ × SQ)

P(GhostState) P(ProgState× ProgState)

ϕ̂[ROQ
]

→Q

ϕ̂[RSQ
]⊆

→PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
ϕ̂ is a JSON file relating Stateflow variables to predicates over C variables.
→Q is a Galois connection between OQ and P(SQ × SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

C program state
transformer semantics

28

Weak Simulation

OQ P(SQ × SQ)

P(GhostState) P(ProgState× ProgState)

ϕ̂[ROQ
]

→Q

ϕ̂[RSQ
]⊆

→PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
ϕ̂ is a JSON file relating Stateflow variables to predicates over C variables.
→Q is a Galois connection between OQ and P(SQ × SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

Predicates over
C program state

28

Refinement

1OQQ

PC
volatile

environment

async

async

�weak

obs1 ... obsn Above: Composition in
the model with an LTS
with a single state 1
Below: Composition in
the C program with an
environment for volatiles

29

Introduction

Architecture

Design

Coq Formalization

Conclusion

30

Coq Formalization

Have semantics of state
charts in Coq
Model of what we’ve
implemented in Q
Framework
Also provide notion of
refinement between two
state charts

(* S is State
E is environment (model vars) *)

Record Machine :=
{ m_initial : (S * E) -> Prop;
m_terminal : (S * E) -> Prop;
m_inner : S -> E -> E -> Prop;
m_step : (S * E) -> (S * E) -> Prop

}.
Inductive Chart :=
| Unit : Chart
| Par : Chart -> Chart -> Chart
| Nest : Machine ->
(S -> Chart) -> Chart.

31

Example: Must Go

Theorem qspec_must_go_ind :
forall qchart qspec data

cfg1 cfg2 env1 env2,
qchart = semantics qspec data
-> chart_step

qchart
(cfg1, env1)
(cfg2, env2)

-> chart_step_pred
must_go_pred qchart
(cfg1, env1)
(cfg2, env2).

Informally, if a top level state
machine can step from A → B,
then it should guarantee that we
cannot go from A → A as an
inner step.
Open question: If Q implements
this spec correctly (the same
question that most compilers
have!)

32

Introduction

Architecture

Design

Coq Formalization

Conclusion

33

Related Work

DeepSpec project and the Verified Software Toolchain (VST)
strongest assurance arguments
a full program logic for C
time-intensive

Modeling with eventB [1], SMT, TLA+
Trillium [5]: Coq proof of refinement between TLA+ specs and a DSL for
specifying concurrent systems, AnerisLang

34

Future Work

Actions back-end: multiple observables per function call
Size of flattened QSpec model causes scalability concerns
Modularity of (Stateflow) design should allow some modular reasoning

Plan to add support for assume-guarantee, circular assume-guarantee reasoning for
Q Framework

Less restrictions on C code implementations
Automatically generate some ACSL specs, especially for pure functions

To this effect, use Verified Software Toolchain’s (VST) [2] symbolic executor

35

Conclusion

Q Framework allows us to build compositional reasoning, and provides evidence
that a C implementation refines a given state machine model
Q has rather strict limitations on the structure of the C
Future work of “One Q.E.D.”
Not open source, but examples can be found here:
https://github.com/sampollard/q-supplement

36

https://github.com/sampollard/q-supplement

References I
[1] Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T. S., Mehta, F., and Voisin, L.

Rodin: an open toolset for modelling and reasoning in Event-B.
International Journal on Software Tools for Technology Transfer 12, 6 (2010), 447–466.

[2] Appel, A. W.
Verified software toolchain.
In Proceedings of the 20th European Conference on Programming Languages and Systems (Saarbrücken,
Germany, Mar. 2011), ESOP/ETAPS (LNCS 6602), Springer-Verlag, pp. 1–17.

[3] Ball, T., Cook, B., Levin, V., and Rajamani, S. K.
Slam and static driver verifier: Technology transfer of formal methods inside microsoft.
In Integrated Formal Methods (Berlin, Heidelberg, 2004), Springer Berlin Heidelberg, pp. 1–20.

[4] Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., and Yakobowski, B.
Frama-c.
In Software Engineering and Formal Methods (Thessaloniki, Greece, Oct. 2012), SEFM (LNCS 7504),
Springer, pp. 233–247.

[5] Timany, A., Gregersen, S. O., Stefanesco, L., Gondelman, L., Nieto, A., and Birkedal, L.
Trillium: Unifying refinement and higher-order distributed separation logic.
arXiv, Sept. 2021.
Available at https://arxiv.org/abs/2109.07863.

37

https://arxiv.org/abs/2109.07863

	Introduction
	Architecture
	Design
	Coq Formalization
	Conclusion
	Appendix

