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Metamaterials - Decreasing Weight 
and Enhancing Functionality

• AM allows integrated design and manufacturing efforts to enhance 
deployment time

•  Enables complex topologies not traditionally possible with    
subtractive manufacturing

Source: ORNL
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5 mm

Metamaterials at Elevated Temperatures

1 mm

Does the base material creep behavior or topology dominate the 
failure of the FCCZ lattices?

• Targeted material properties able to include multifunctionality. 

• Limited by lack of understanding of fracture and failure behavior

What is the stress dependence of the failure mode?
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Specimen Temperature Test Type Stress

Ambient
Uniaxial (Tension) NA550 °C

650 °C

550 °C Creep 
(Compression)

35% Yield
50% Yield
65% Yield

650 °C Creep 
(Compression)

35% Yield
50% Yield
65% Yield

Ambient
Uniaxial 

(Compression)

NA
450 °C NA
550 °C NA
650 °C NA

550 °C
Creep 

(Compression)

35% Yield
50% Yield
65% Yield

650 °C
35% Yield
50% Yield
65% Yield

Specimen held at temperature for 5 
min before test started

10 mm
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de Olveira et al., Metals, 2019

Inconel 625 at 550℃ and 650℃

650 ℃

550 ℃

Shoemaker, Superalloys, TMS, 2005

• Inconel 625 is solid solution hardened alloy 
with an FCC γ matrix

• Only small changes in material properties 
between 550 ℃ and 650 ℃

• Ductility loss at 600 ℃

• Change in creep rate due to γ’’

• At 550 ℃ no short term precipitates 

• At 650 ℃ precipitates γ’’ (body-centered 
tetragonal) in ~7 hours



X-ray Computed Tomography – Lattice Z Strut

• 99.9% dense

• Sphericity index used to define difference between defects



Lattice Strut – perpendicular cross section Grip Section – perpendicular cross section

111
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Ni Super 
Alloy

(a) (b)(a)

100 µm 100 µm
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101001

Ni Super 
Alloy

(a)

Lattice Strut – build direction cross section Grip Section – build direction cross section

(b)(a)

100 µm 100 µm

 Specimen
Average Aspect 

Ratio
Average Length of Grain 

Major Axis (µm)
 Lattice - build direction 5.5 59.2
 Lattice - perpendicular 2.1 31.7
 Grip section - build direction 4.0 53.2
 Grip section - perpendicular 2.3 28.2
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1 mm

10 mm

Experimental Setup

• 2 Camera setup – local and global 
for DIC

• Induction heating
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Specimen Setup

• Thermocouple welded to 
specimen at hottest 
location – Welded below 
strut

• Blue light filter

• As printed surface used as 
speckle pattern

• Specimen held at temp 5 
min before testing

10 mm

10 mm

10 mm
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Material Characterization

Temperature 
℃

Yield Strength 
(MPa)

Stiffness 
(GPa)

Ambient 503 216
450 471 137
550 450 111
650 455 91

Temperature ℃ Max Force (kN) Yield Strength (MPa) Stiffness (GPa)
Ambient 4.68 375 217

450 3.96 318 117
550 3.95 317 135
650 3.79 304 139

Flat Dog Bone - Tension
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150+ hours

Lattice “stability” more dependent on stress 
and temperature than solid bars

150+ hours



13Lattice: Two orders of magnitude larger creep rate than round 
bar. Temperature and stress have large change in lattice response

1.251.201.151.101.05
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Mechanistic Changes 

• Three different time scales, seconds, hours, days

• Deformation mechanism changes and large 
difference in primary creep strain 

Mechanism 
change

Compressive Creep Curve
Strains inverted to mimic 
tensile creep curves

Mechanism 
change

150+ hours
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• 550 ℃ - 50%  - No bending detected

• 550 ℃ - 65%  - Bending detected after 
initial loading

550 ℃ - 50% 550 ℃ - 65%
U

nl
oa

de
d

25 hours218 hours

1 mm

1 mm

1 mm

1 mm
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Euler Beam Creep Buckling

• Initial curvature found to be important 
parameter in creep buckling of a column 
(Hoff, Aeronaut. Quart., 1956)

• Buckling occurs in Z struts and diagonal struts

• Time delayed progressive buckling due to 
symmetry of specimen

• With sufficient bending outside of column 
changes from compression to tension

Force
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Collapsed Lattices

• The radius of curvature is proportional to 
the creep curve

• Buckling of the struts is driving the 
compressive “creep” of the lattice

• Larger initial load caused larger initial 
bend (smaller radius of curvature)

• Higher temperature led to faster rupture 
time
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(a)

150+ 
hours

Failure Mechanism Regime

Stable Creep
days

Progressive Buckling
hours

(b)

Rapid Collapse
seconds
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Conclusions

• Buckling of struts drive creep deformation of FCCZ lattices

• FCCZ lattice more dependent on changes in stress and 
temperature than solid specimen

• Two orders of magnitude difference in steady state creep 
exponent

• Three identified failure mechanism regimes

550 °C 65% of yield

1 mm
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Lattice Strut – perpendicular cross section Grip Section – perpendicular cross section
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Lattice Strut – lateral cross section Grip Section – lateral cross section
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Material – AM Inconel 625

Laser Powder Bed AM
Power: 285 W

Speed: 960 mm/s

Beam ~80 µm diameter
Layer Height: 40 µm

10 mm 100 µm 100 µm

Lattice Strut EBSD Grip Section EBSD
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101001

Ni Super Alloy
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Material – AM Inconel 625
Lattice Strut EBSD Grip Section EBSD
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Decreasing Weight and Waste
• Americans traveled 3.3 trillion vehicle miles in 

2019, at $3/gallon ~$400 billion/year

• Reducing each vehicle by 0.5% save 528 million 
gallons/year

• Similar payoff for electric vehicles and battery life

• Lighter transportation means larger payloads and 
less fuel consumption

Toyota Camry
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Ashby, Oxford 2017 

Harris, nTopology 2020

Populating Material Space

• Low density metamaterials use shape to 
achieve desired properties

• Populating empty design space

• Metamaterials use limited by lack of 
understanding of fracture and failure 
behavior

• Most metamaterial studies focused on 
elastic properties
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• More optimized strength-to-weight 
than foams

• Targeted material properties

• Topology selected to optimize 
multiple properties

5 mm

Low Density Metamaterials at Elevated Temperatures

1 mm

10 mm10 mm
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650 °C 50% of yield

Compressive Creep Behavior of Low 
Density Metamaterials

1 mm

Hypotheses 

1) The lattice will have the same activation energy and steady state creep 
exponent as the bulk material when normalized for density – FALSE 

2) The buckling of the Z-struts drives lattice failure – MOSTLY TRUE

Creep of Inconel 625 FCCZ Lattices


