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Motivation
• Dissociation at high temperatures will affect 
optical properties of air

• Composite GD is species dependent
• Constant Gladstone-Dale coefficient 
cannot be assumed

• Temperature and pressure dependance
• No experimental validation currently exists

To make this measurement, we need:
1. Experimental facility capable of 

generating 5000K and above at 
moderate to high pressure 
  Shock Tubes

2. Diagnostic to resolve large discrete 
density changes

Mackey, Lauren E., and Iain D. Boyd. AIAA Journal 57.9 (2019)
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Gladstone-Dale Simulation

• Wavelength dependence of gas 
species
• N2, O2, NO are well tabulated
• N and O from experimental data
• Carbon species and electrons are not 
considered here

• Equilibrium composition 
of air at constant P varies 
with T
• Presence of N and O 
significant past ~3500K

Howell, Janet Tucker. Physical Review 6.2 (1915)



QFII Diagnostic
Quadrature Fringe Imaging Interferometer
Hybrid broadband and narrowband technique for 
measuring large and discrete density gradients 
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• Narrowband analog quadrature to 
automate tracking for high resolution
• 405 nm laser diode

• Balanced broadband pattern for 
absolute reference 
• SuperK EVO supercontinuum source



Calibration
• Calculate absolute index with narrowband 
analog quadrature

• This technique leads to the highest resolution 
and automated tracking

• Calibration verified with linear GD relationship 
at ambient conditions

• Location of center fringe also related to index
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• Post incident-shock conditions measured with QFII
• M2.7 - M4.3
• Constant P1 = 10.7 kPa = 80 Torr
• He driver gas and air driven gas

• Results agree with theory within 2%

Shock Tube Experiments at 
Georgia Tech

Incident Shock

Reflected Shock

En
dw

al
l

1.0 µs

2.0 µs

0.0 µs

Incident Shock

3.0 µs

Broadband 
Fringes 

4.0 µs

Pre-Shock

Window (1.24cm away from Endwall)

Incident Shock

Wang et al. Optics Letters, vol. 47 (16), 47, pp. 4159-4162, 2022



Sandia Free-Piston HST
• Capabilities beyond traditional shock 
tubes
• 35kg piston compressed driver gas more 
efficiently

• Post reflected shock conditions able to 
reach 6000-8000K at pressures > 100 psi

• Conditions calculated with wave speed 
and NASA CEA

Lynch, Kyle P., et al. AIAA SciTech 2022 Forum. 2022.
Petter, Samuel J., et al. AIAA Scitech 2020 Forum. 2020.



Experimental Setup

• Mach-Zehnder interferometer
• 405 nm laser diode
• SuperK supercontinuum source

• Calibration was done with UHS Shimadzu camera
• External vibrations increased uncertainty
• Triggering off endwall PCB

P1, T1, ρ1P2, T2, ρ2

UHS 
Camera

Stage

50/50 BS

Narrowband 
Source

Broadband 
Source

LP Dichroic

Broadband 
Mirrors 50/50 BS

Filters

Tilted Delay 
Plate

Delay Plate

Windows to 
Mach Delay

Beam 
Block

Narrowband
Column

Broadband
Columns



Results - Video
State 5 State 2

P5 7.87 Bar P2 0.63 Bar
T5 7653 K T2 5343 K
⍴5 0.24 kg/m3 ⍴2 0.03 kg/m3

Shimadzu HPV-X2 
1MHz, 200 ns exposure

Direction of Reflected Shock Wave 
(Incident Shock M13.95)

Reflected Shock 
Front

t = 10 μs 24 μs 26 μs



Reflected Shock Flow Bifurcation
• In GT experiments, post-incident shock 
flow shows a nearly discrete index change

• Boundary layer interaction with reflected shock 
front causes bifurcation
• Foot
• Tail Shock (Vortex sheet and stagnation streamline)

• Petersen and Hansen reported similar time scale
• 20-30 us before actual P5, T5 conditions

Petersen, E.L., Hanson, R.K. Shock Waves 15, 333–340 (2006).
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Results - Index of Refraction 
• Post-incident and post-reflected shock 
were within the measurement range

• Rising index right before shock front 
captures the bifurcation foot

• Index continues to rise due to tail shock 
influence before measurement time ends

• Bifurcation produces additional 
challenges to extract index measurement 
at a single condition
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Summary and Conclusion
• First known Gladstone-Dale coefficient 
measurements above 5000K at high pressures

• Free-piston facility combined with QFII diagnostic in 
a high pressure, high temperature reflected shock 
conditions

• Reflected shock flow has complex bifurcation 
features

• Higher density conditions necessary to generate 
better validation data 
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