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* Dissociation at high temperatures will affect =GD = Z GDS&
optical properties of air f-: i P
 Composite GD is species dependent density  Gladstone-Dale

« Constant Gladstone-Dale coefficient Coeflicient

cannot be assumed
* Temperature and pressure dependance Example: Stagnation flow over a
. . . . unt body causes dissociation
* No experimental validation currently exists — ®"[ wens
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To make this measurement, we need:

1.  Experimental facility capable of
generating 5000K and above at
moderate to high pressure 0.005 - N

y (m)

Mass Fraction
o)

N
o
A

10°}

- Shock Tubes

0.01F

Diagnostic to resolve large discrete oo oo 0
density changes R e Y x (m)

a) X (m)

Mackey, Lauren E., and lain D. Boyd. AIAA Journal 57.9 (2019)



Mole Fraction [-]

o

lllllll

i L L 1 i 1 1 1 L X |
OB T Tees T fie 0 Soon | ZRo0 Lovo . 4S00 | good -

Fig. 3.

Dispersion Curves: 1., Air; IL, Oxygen. Abscissae: N in Angstrom units.

Ordinates: {(u — 1).

Howell, Janet Tucker. Physical Review 6.2 (1915)

Gladstone-Dale Simulation
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Wavelength dependence of gas :
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* N,, O,, NO are well tabulated e
* N and O from experimental data o
« Carbon species and electrons are not 3 T
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e Equilibrium composition
of air at constant P varies
with T

 Presence of N and O
significant past ~3500K
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QFIl Diagnostic

Quadrature Fringe Imaging Interferometer

Hybrid broadband and narrowband technique for
measuring large and discrete density gradients
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* Narrowband analog quadrature to
automate tracking for high resolution

* 405 nm laser diode

« Balanced broadband pattern for
absolute reference

« SuperK EVO supercontinuum source
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Normalized

Normalized

Calibration

e Calculate absolute index with narrowband

analog quadrature

 This technique leads to the highest resolution
and automated tracking

éé_iibration Camera

Normalized Intensity [a.u.]

« Calibration verified with linear GD relationship i mas 17 ma 72e 724
at ambient conditions

 Location of center fringe also related to index
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Shock Tube Experiments at

Georgia Tech

* Post incident-shock conditions measured with QFI|

e M2.7 - M4.3
 Constant P1 =10.7 kPa = 80 Torr
* He driver gas and air driven gas

» Results agree with theory within 2%
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Sandia Free-Piston HST

« Capabilities beyond traditional shock
tubes

« 35kg piston compressed driver gas more
efficiently

* Post reflected shock conditions able to
reach 6000-8000K at pressures > 100 psi

e Conditions calculated with wave speed
and NASA CEA

Shock Tube

Reservoir

Lynch, Kyle P., et al. AIAA SciTech 2022 Forum. 2022.
Petter, Samuel J., et al. AIAA Scitech 2020 Forum. 2020.
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Experimental Setup
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Mach-Zehnder interferometer
405 nm laser diode
* SuperK supercontinuum source

e Calibration was done with UHS Shimadzu camera
« External vibrations increased uncertainty
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Results - Video

Direction of Reflected Shock Wave
(Incident Shock M13.95)

Shimadzu HPV-X2
1MHz, 200 ns exposure

P5 7.87 Bar P2 0.63 Bar
T5 7653 K T2 5343 K
p5 0.24 kg/m3 p2 0.03 kg/m3

Reflected Shock
Front
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Reflected Shock Flow Bifurcation

* In GT experiments, post-incident shock
flow shows a nearly discrete index change

Reflected Shock

us =0  Boundary layer interaction with reflected shock
Vortex Sh aet front causes bifurcation
* Foot

Stagnaion « Tail Shock (Vortex sheet and stagnation streamline)

\“f“"’ Streamline
‘ » Petersen and Hansen reported similar time scale
e 20-30 us before actual P5, TS5 conditions

——) Direction of Reflected Shock Wave ————
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Results - Index of Refraction

» Post-incident and post-reflected shock
were within the measurement range

* Rising index right before shock front
captures the bifurcation foot

* Index continues to rise due to ta_iI shock
influence before measurement time ends

 Bifurcation produces additional
challenges to extract index measurement

at a single condition
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Summary and Conclusion

Mole Fraction [-]

First known Gladstone-Dale coefficient
measurements above 5000K at high pressures

Free-piston facility combined with QFIl diagnostic in
a high pressure, high temperature reflected shock
conditions

Reflected shock flow has complex bifurcation
features

Higher density conditions necessary to generate
better validation data
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Thank you for listening! Questions?

Gwen Wang Kyle Daniel Kyle Lynch Daniel Guildenbecher  Ellen Mazumdar

(GT) (Sandia) (Sandia) (Sandia) (GT)
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