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This paper presents the uncertainty propagation of turbulent coefficients for the Spalart–
Allmaras (SA) turbulence model using projection-based reduced-order models (ROMs). ROMs
are used instead of Reynolds-averaged Navier–Stokes (RANS) solvers and stochastic colloca-
tion/Galerkin and Monte Carlo methods because they are computationally inexpensive and
tend to offer more accuracy than a polynomial surrogate. The uncertainty propagation is per-
formed on two benchmark RANS cases documented on NASA’s turbulence modeling resource.
Uncertainty propagation of the SA turbulent coefficients using a ROM is shown to compare well
against uncertainty propagation performed using only RANS and using a Gaussian process
regression (GP) model. The ROM is shown to be more robust to the size and spread of the
training data compared to a GP model.

I. Nomenclature

Ω = Spatial domain
D = Parameter domain
𝑁 = Number of volumes in spatial domain, i.e., number of cells
𝑝 = Number of modes
𝐶 𝑓 = wall coefficient of friction
𝝁 = vector of system parameters
𝑼 = Favre-averaged state vector
𝒒 = Discretized state vector
𝒓 = Discretized residual
ΦΦΦ = Reduced basis
q̂ = Reduced coordinates
qref = Reference state
SA = Spalart-Allmaras
FOM = Full-order model
ROM = Projection-based reduced-order model
GP = Gaussian process regression
LHS = Latin hypercube sampling

II. Introduction

As computing power has increased, so too has the complexity of computational fluid dynamics (CFD) applications.
However, while methods such as direct numerical simulation (DNS) and large eddy simulation (LES) have

allowed for highly accurate and resolved simulations, the applications for these methods are constrained by their high
computational expense [1]. For this reason, Reynolds-averaged Navier–Stokes (RANS) solvers are used along with
turbulence closures that model the Reynolds stress. These closure models are typically constructed via a combination
of physical expertise and empirical arguments, and are calibrated to provide accurate predictions for a class of canonical
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flows. As an example, one widely used turbulence closure model is the Spalart–Allmaras (SA) model. The SA model
evolves a transport equation for the turbulent eddy viscosity and contains numerous model coefficients. The standard
values for these coefficients are obtained by calibrating the model to canonical flows, but it is well appreciated that the
coefficients may have varying ranges of optimal values depending on the problem [2].

Regardless of what closure is employed, quantifying the impact of parametric uncertainties in RANS models is
imperative for simulation-based design and engineering. Various approaches have been employed for quantifying
parametric uncertainties in RANS models. Borggard and collaborators, for instance, performed sensitivity analysis of
the 𝑘–𝜖 model via simulation of the forward sensitivity equations [3, 4]. Platteeuw et al. model uncertainty in solutions
to the 𝑘–𝜖 turbulence model due to uncertainties in its coefficients with a Probabilistic Collocation Method [5] and
Margheri et al. propagate similar uncertainties in 𝑘–𝜖 and 𝑘–𝜔 models via generalized Polynomial Chaos (gPC);
these processes involve modeling the solution as a random variable via a polynomial chaos expansion and employing
projection to form a well-posed system. More directly, Dunn et al. [6] investigate parametric sensitivities for the
𝑘–𝜖 model via Latin Hypercube Sampling (LHS). In addition to forward propagation, numerous bodies of work have
performed “backward" approaches that attempt to infer an optimal parameter distribution [7]. In these cases, it is
common to employ low-cost surrogate models to accelerate the simulation of the forward problem. For instance,
Ray et al. employ support vector machines to learn an optimal eddy viscosity model for a jet-in-crossflow [8]. Ray
et al. employed similar techniques to calibrate 𝑘–𝜖 model constants for a jet-in-crossflow [9, 10] and SST (Shear
Stress Transport) model constants and inflow conditions for HIFiRE-1 simulations. Various other turbulence model
calibration efforts efforts exist in the literature [11, 12] and we refer to the review by Xiao and Cinnella [13] for a more
comprehensive overview.

In this work we investigate the use of projection-based reduced-order models (ROMs) for quantifying parametric
uncertainties in RANS models. Projection-based ROMs are weighted residual methods that consist of a computationally
intensive offline training phase and a computationally cheap online evaluation phase. In the offline phase a reduced
trial space is generated by executing the full-order model for various parameter instances and collecting solution data
comprising “state snapshots". The reduced trial space is then identified, e.g., via the reduced-basis method [14–17]
or the proper orthogonal decomposition method [18]. In the online phase, an approximate solution to the governing
equations for a novel parameter instances is then sought within this reduced trial space via a (Petrov-)Galerkin projection
or residual minimization. The result of this process is a ROM that can be executed much faster than its corresponding
full-order model (FOM).

In this contribution we investigate accelerating UQ analyses of uncertain coefficients in the SA RANS model
by (1) building a ROM from a small subset of FOM simulations obtained from LHS of a parameter space and
(2) employing the ROM to generate approximate solutions for a much larger set of Latin hypercube samples. We
investigate ROMs constructed via Galerkin projection with entropy variables and least-squares residual minimization,
and results are presented for two benchmark problems from the NASA turbulence modeling resource. While the ROM
methods employed in this work are only investigated within the context of accelerating LHS for forward propagation
of uncertainties they could be used in numerous other ways to support the above literature. For instance, they could
be employed to reduce the high computational burden associated with gPC methods by reducing the spatial dimension
of the FOM [19], or they could be employed as a high-quality surrogate to accelerate parameter calibration similar to
Ref [8].

This manuscript proceeds as follows. Section III describes the Favre–Averaged Navier–Stokes equations with the
Spalart–Allmaras turbulence model along with their discretized form employed by the full-order model. Section IV
formulates the reduced-order models employed in this work, while Section V provides numerical results. Conclusions
are given in Section VI.

III. Full-Order Model
We consider solutions to the Favre-averaged Navier–Stokes equations closed with the Spalart–Allmaras–neg (SA-

neg) turbulence model [20] defined on the spatial domain Ω ⊂ R3. The system of equations can be written in
conservative form as

∇ · 𝑭 (𝑼) − ∇ · 𝑭𝑣 (𝑼,∇𝑼; 𝝁) = 𝑺 (𝑼,∇𝑼; 𝝁) (1)

where 𝑼 =
[
𝜌, 𝜌𝒖̃, 𝜌𝐸̃, 𝜌𝜈̃

]𝑇 : Ω → R6 is the state comprising the Favre-averaged density, momentum, total energy,
and SA-neg viscosity, 𝑭(·) ∈ R6 is the inviscid flux, 𝑭𝑣 (·, ·; ·) ∈ R6 is the viscous flux, 𝑺(·, ·; ·) is a source term, and
for D representing the parameter domain then 𝝁 ∈ D ⊂ R10 are parameters defining the SA-neg turbulence model. In
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particular there are ten model parameters: 𝝁 =
[
𝜎, 𝑐𝑤1 , 𝑐𝑤2 , 𝑐𝑤3 , 𝑐𝑏1 , 𝑐𝑏2 , 𝑐𝜈1 , 𝜅, 𝑐𝑡3 , 𝑐𝑡4

]𝑇 . The full definition of the
inviscid fluxes, viscous fluxes, and source terms is given in Appendix A.

The governing equations are discretized with a cell-centered finite volume method. This discretization can be
described by partitioning the domain into 𝑁 non-overlapping volumes Ω 𝑗 such that ∪{Ω 𝑗 }𝑁𝑗=1 = Ω. The finite volume
method then integrates over each cell volume and, integrating the viscous and inviscid fluxes by parts, results in the
system in each cell ∮

Γ 𝑗

(𝑭 (𝑼) − 𝑭𝑣 (𝑼,∇𝑼; 𝝁)) · 𝒏 𝑗𝑑𝑆 =
∫
Ω 𝑗

𝑺 (𝑼,∇𝑼; 𝝁) 𝑑𝑉, (2)

where Γ 𝑗 is the boundary of the 𝑗 th cell and 𝒏 𝑗 is the cell normal vector. A discrete system of equations is then
obtained by discretizing the state 𝑼 at each cell center, replacing the inviscid and viscous fluxes with their numerical
counterparts (e.g., the Roe flux), and devising a scheme to compute the gradient of the state. All in all, the finite-volume
method results in a 6𝑁-dimensional system of nonlinear algebraic equations

𝒓 (q(𝝁); 𝝁) = 0 (3)

where 𝒓 : R6𝑁 × D → R6𝑁 is the discretized residual, and q : D → R6𝑁 is the discretized state at each cell center,
i.e.,

q =
[
𝜌1 𝜌𝒖̃1 𝜌𝐸̃1 𝜌𝜈̃1 · · · 𝜌𝑁 · · · 𝜌𝜈̃𝑁

]𝑇
with 𝜌𝑖 , 𝑖 = 1, . . . , 𝑁 referring to density at the 𝑖th cell center and the same for the other quantities. We note that the
discrete system (3) has the same units as (2), i.e., at no point do we divide through by the cell volumes. We additionally
note that the discrete system (3) can be interpreted as a weighted residual solution to the system (1) with a piecewise
constant trial space described by the basis ΦΦΦfv = I ∈ R6𝑁×6𝑁 .

In the present work the Sandia Parallel Aerodynamics and Reentry Code (SPARC) [21] is employed to discretize and
solve the system (1). A second-order Steger–Warming flux scheme is used for the inviscid fluxes and a least-squares
scheme is used for the viscous fluxes. We employ min-mod as a limiter. All cases are run in a non-dimensional
configuration such that the free-stream speed of sound is unity. In all cases, the heat capacity ratio is 𝛾 = 1.4, the
Prandtl number is Pr = 0.72, and the turbulent Prandtl number is Prt = 0.9.

IV. Reduced-Order Models
In the present work, we focus on propagating uncertainties in the parameter vector 𝝁 to solutions 𝒒(𝝁). The most

straightforward approach for quantifying this uncertainty is Monte Carlo sampling where the FOM (3) is repeatedly
solved for different parameter samples. Repeatedly solving the FOM, unfortunately, is a computationally intensive
process. Instead, we investigate the utility of projection-based reduced-order models (ROM) as a low-cost but high-
fidelity approximate model. The ROMs in this work employ the reduced basis method for the state approximation and
Galerkin and least-squares residual minimization for projection.

A. State approximation via the reduced basis method
Projection-based reduced-order models restrict the state to belong within a low-dimensional subspace. Mathemat-

ically, this is described by writing an approximation to the state as

𝒒(𝝁) ≈ ΦΦΦq̂(𝝁) + qref (4)

where for 𝑝 being the number of modes then ΦΦΦ ∈ R6𝑁×𝑝 with 𝑝 ≪ 6𝑁 is a reduced basis, q̂ : D → 𝑝 are
reduced coordinates, and qref ∈ R6𝑁 is a prescribed reference state. Numerous approaches exist for computing
the basis ΦΦΦ including proper orthogonal decomposition and the reduced basis method. Here, the latter approach is
employed. Given a set of training parameter samples {𝝁𝑖}

𝑛samples
𝑖=1 , we define the basis matrix ΦΦΦ from a snapshot matrix

S =
[
q̃(𝝁1) · · · q̃(𝝁𝑛samples )

]
∈ R6𝑁×𝑛samples . Specifically, in the present work we set ΦΦΦ to be S orthogonalized with

respect to the cell volumes such that ΦΦΦ𝑇 WΦΦΦ = I, where W = diag(𝑉1, · · · , 𝑉1, 𝑉2, · · · , 𝑉𝑁 ) and 𝑉𝑖 , 𝑖 = 1, . . . , 𝑁 is
the volume of the 𝑖th cell. This definition associates with a discrete inner product that mimics its continuous counterpart,
i.e., for a state 𝑞(𝑥) ∈ R6 on the domain Ω discretized into the vector q ∈ R6𝑁 comprising the value of 𝑞(𝑥) at 𝑁 finite
volume cell centers we have ∫

Ω
𝑞(𝑥)𝑇 𝑞(𝑥)𝑑𝑉 ≈ q𝑇 Wq.
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To ensure that the governing equations associated with the SA turbulence model are being satisfied, we additionally
investigate a split-basis formulation where independent basis vectors are employed for the SA viscosity, 𝜈̃. Defining a
“masking" operator as

MMM𝑖 𝑗 =

{
1 𝑖 = 𝑗 = 6, 12, . . . , 6𝑁
0 else

∈ R6𝑁×6𝑁

we define a split basis as
ΦΦΦ = orthogonalize ( [(I −MMM) S, MMMS]) ∈ R6𝑁×2𝑛samples . (5)

Employing the split basis (5) results in ROMs that satisfy an independent governing equation for 𝜈̃ (as opposed to
lumping the governing equation for 𝜈̃ into the governing equations for mass, momentum, and energy).

B. Galerkin reduced-order model discretized in entropy variables
Having defined the state approximation (4), we now define the projection scheme used to generate the ROM.

Galerkin projection is one of the most common model reduction approaches. In Galerkin projection we restrict the
state to live within the low-dimensional subspace defined by the basis ΦΦΦ and compute solutions within this low-
dimensional subspace that satisfy the weak form of the governing equations. Mathematically this process results in the
reduced-order model

ΦΦΦ𝑇 𝒓 (ΦΦΦq̂(𝝁) + qref; 𝝁) = 0. (6)

We emphasize that the Galerkin ROM (6) can be interpreted as a weighted residual solution to the weak form of (1) with
a piecewise constant trial space described by the basis ΦΦΦ. For non-symmetric and nonlinear systems, unfortunately,
Galerkin projection is known to suffer from stability challenges [22]. Further, for vector-valued systems such as the
compressible Navier–Stokes equations, Galerkin projection can result in ROMs that are dimensionally inconsistent if
special care is not taken [23, 24].

In the present work we employ a variable transform to entropy variables to stabilize Galerkin projection by
symmetrizing the governing equations. To this end we introduce a set of entropy variables as [25–28]

V =



−𝑠
𝛾−1 + 𝛾+1

𝛾−1 − 𝜌𝐸̃
𝑝̃ − 1

2 𝜁 𝜈̃
2

𝜌𝑢̃1
𝑝̃

𝜌𝑢̃2
𝑝̃

𝜌𝑢̃3
𝑝̃

− 𝜌
𝑝̃

𝜁 𝜈̃


where 𝜁 ∈ R+ is a scalar weighting and 𝑠 = ln(𝑝) − 𝛾 log(𝜌). In the Galerkin ROM with entropy variables, we generate
a basis for the entropy variables and compute solutions in entropy variables that satisfy the weak form of the governing
equations. Mathematically this process results in the reduced-order model

ΦΦΦ𝑇 𝒓 (V(ΦΦΦq̂(𝝁) + qref); 𝝁) = 0 (7)

where V : R6𝑁 → R6𝑁 is the mapping from entropy variables to conserved variables at each cell center. The Galerkin
ROM (7) is solved with Newton’s method.

Discretizing in entropy variables (and/or maintaining entropy stability) can result in numerous numerical advan-
tages [25–27, 29]. Here we emphasize that, while we discretize our ROM in entropy variables, the full-order model
SPARC still discretizes in conserved variables. Our past work has suggested that, even if the FOM is not discretized
in entropy variables (or is entropy stable), discretizing in entropy variables for the ROM still results in improved
performance.

C. Least-squares residual minimization reduced-order model
In addition to the Galerkin ROM in entropy variables we also consider ROMs based on least-squares residual

minimization. Least-squares ROMs can be used over the more traditional Galerkin projection and have been shown
to result in enhanced stability and accuracy [30–32]. In a Least-Squares Petrov Galerkin (LSPG) ROM, the residual
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minimization is performed by substituting the approximation of the state vector (4) into the FOM (3) and minimizing
the residual in a weighted ℓ2 norm

q̂ = arg min
q̂∗∈R𝑝



𝒓 (
qref +ΦΦΦq̂∗; 𝝁

)


M (8)

where M ∈ R6𝑁×6𝑁 is a symmetric positive definite weighting matrix defining the norm ∥v∥2
M ≡ v𝑇 Mv. The residual

minimization problem is solved via the Gauss-Newton method with a QR decomposition.
In the present work we investigate weighted norms based on dimensional and physics-based arguments. In

particular, due to the large difference in magnitudes between the state variables and the turbulence field variable,
defining a physically-relevant residual minimization problem requires a norm that balances the contributions from the
various state variables. Three norms are investigated: one based on the mean absolute value of the variables, one based
on the mean residual norm of the variable, and a scaling based on a k-nearest-neighbors prediction of the residual norm
for the variable. For simplicity, the weighting matrix M is defined as

M𝑖 𝑗 =

{
Aℓ 𝑖 = 𝑗 = ℓ, ℓ + 6, . . . , 6𝑁 − 6 + ℓ

0 else
, ℓ = 1, . . . , 6 (9)

whereAℓ ∈ R𝑁 represents the weighting for each state equation at each cell center. Let 𝒒ℓ = [𝒒ℓ , 𝒒6+ℓ , · · · , 𝒒𝑁−6+ℓ]𝑇 ∈
R𝑁 and 𝒓ℓ = [𝒓ℓ , 𝒓6+ℓ , · · · , 𝒓𝑁−6+ℓ]𝑇 ∈ R𝑁 , ℓ = 1, ..., 6 represent the state vector and residual for each respective
state equation at all cell centers. Let 𝒒train

ℓ ∈ R𝑁𝑁train and 𝒓train
ℓ ∈ R𝑁𝑁train represent the state and residual solutions on

a training set with size 𝑁train and parameters 𝝁train ∈ RD×𝑁train . Then, the scaling based on the mean absolute value of
the variable defines a norm that scales each residual component based on the mean absolute value of the state variable
over the training set, i.e.,

Aℓ =
1

avg
𝒒∈R𝑁

(��𝒒train
ℓ

��) (10)

where | · | represents the absolute value. Analogously, the scaling based on the mean residual defines a norm that scales
each component of the residual based on the mean value of the residual norm defined over the training set.

Aℓ =
1

∥𝒓train
ℓ ∥

(11)

where here (·̄) represents the spatial average and ∥𝒓train
ℓ ∥ is an approximation for the mean residual norm. Finally,

the scaling using k-NN trains a model to predict the mean residual for each state variable based on the values of the
turbulent coefficients and then uses the inverse of that predicted mean residual to scale the residual for each state
component

Aℓ =
1

Jℓ (𝝁)
(12)

where Jℓ : D → R represents the k-NN functional with Jℓ : 𝝁 ↦→ ∥𝒓∗ℓ ∥. The k-NN model is trained from the the
mean residual norm ∥𝒓train

ℓ ∥ ∈ R𝑁train taken from the training data 𝒓train
ℓ and from the parameters defined in the training

set 𝝁train.

V. Results
This section presents results for the propagation of uncertainties of the SA turbulence model coefficients for two

benchmark RANS cases from the NASA Turbulence Modeling Resource: a turbulent flat plate with a zero pressure-
gradient [33] and a wall-mounted hump with a separated flow [34]. The reduced-order models are implemented in
Sandia’s compressible CFD solver SPARC [21] with the open-source ROM package Pressio∗. The ROM results are
compared to results from a Gaussian Process Regression (GP) model.

A. Prior Uncertainty
The prior uncertainty was selected to be the same as Kwanten [2]. It’s important to note that Kwanten used the

standard version of the SA model while the negative SA model is used here. Table 1 summarizes the approximate
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Coefficient Lower Upper

𝜎 0.6 1.0
𝑐𝑤2 0.2 0.5
𝑐𝑤3 1.0 3.0
𝑐𝜈1 4.0 10.0
𝑐𝑏1 0.13 0.14
𝑐𝑏2 0.61 0.69
𝜅 0.3 0.5

Table 1 Prior uncertainty of the SA turbulent coefficients.

upper and lower bounds for each turbulent coefficient that appears in the SA turbulence model equations. The ranges
for 𝑐𝑏1 and 𝑐𝑏2 were found using a relation to 𝜎 derived by Kwanten. The relation was derived by using a quadratic
polynomial fit to plots of 𝑐𝑏1 and 𝑐𝑏2 that appear in the original Spalart-Allmaras paper [35, Figure 1].

10𝑐𝑏1 = 0.187𝜎2 − 0.4973𝜎 + 1.6046

1 + 𝑐𝑏2 = 0.0751𝜎2 + 0.0834𝜎 + 1.5321
(13)

The coefficients were distributed uniformly between their lower and upper bounds for all training and test sets.

B. Zero pressure-gradient turbulent flatplate boundary layer
A zero-pressure-gradient turbulent flat plate flow was selected as the first case to propagate the uncertainty of the

SA turbulence model coefficients. This case was based on the 2D turbulent flat plate verification case ran by NASA
Langley [33]. In this case, the inlet flow comes in at Mach 0.2 at a Reynolds number of 5 million based on a unit length
of the grid and a reference temperature of 300 K. The total pressure over the reference pressure at the inlet is 1.02828
and at the outlet is 1.0. The total temperature over the reference temperature is 1.008 at the inlet. Figure 1 shows the
computational grid. The FOM solved for compressible flow over the flat plate.

Fig. 1 Computational Grid of the 2D Flatplate

For this benchmark case, four SA turbulent coefficients were varied: 𝜎, 𝑐𝑤2 , 𝑐𝑤3 , and 𝑐𝜈1 . A latin hypercube
sampling (LHS) method was used to create the training points for the ROM. Sixteen training points were used. The
ROM predicted solutions at a 50 additional points selected using LHS. These fifty additional points were not used to
train the ROM.

The three weighted norms described in Sec. IV.C and the Galerkin entropy formulation ROM in Sec. IV.B are
tested. Figure 2 demonstrates predictions for wall coefficient of friction made by the residual-minimization ROM with
no scaling (top), the residual minimization ROM with k-NN scaling (middle) (12), and the Galerkin Entropy ROM

∗https://github.com/Pressio
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(bottom). The results for least-squares ROMs with the mean absolute value scaling (10) are not shown here because
they are similar to the results obtained with no scaling, and results for the least-squares ROMs using a mean residual
scaling (11) are also not shown here as they are similar to the results from k-NN scaling. The left figure shows the
95% confidence interval (CI) of the wall coefficient of friction overlayed across the “true” 95% CI that is the FOM
solution at the test points and the right figure compares the prediction of the wall coefficient of friction to the “true”
value, which is obtained from the FOM solution.

With no scaling used, the ROM predicts a small 95% CI and predicts an incorrect trend in the wall coefficient of
friction. Using a k-NN scaling allows the ROM to predict a larger 95% CI, but the ROM prediction is not accurate
compared to the “true” distribution, which is the distribution produced by the FOM solutions at the test points. The
Galerkin entropy ROM performs the best of the methods considered: the method predicts an accurate distribution
for skin friction and faithfully reproduces the FOM. We compare the ROM to another surrogate, a Gaussian process
regression (GP) model trained on the same training points as the ROM. The GP model accepts a parameter instance (or
a set of parameter instances) and outputs a scalar prediction; the GP model output is defined to be fGP : RD → R with
fGP : 𝜇𝜇𝜇 ↦→ 𝐶 𝑓 (𝜇𝜇𝜇) where 𝐶 𝑓 (𝝁) denote the predicted average coefficient of friction across the bottom wall. The GP
model used a constant kernel with an initial guess of 1 and bounds of [1e-5, 1e3] multiplied to a radial basis function
kernel with an initial guess of 10 and bounds of [1e-5, 1e3]. The GP model is able to predict the average wall coefficient
of friction at an 𝑅2 of 0.99 and is competitive with the best ROM method.

We solve the FOM at two sets of points: the training set and the test set. These sets are used to both train the ROM
and evaluate how well it performs in the parameter space. Because the FOM is so computationally expensive to run,
it is necessary to evaluate whether the ROM adds any useful information or whether there was enough information to
perform UQ with just the FOM solution at the training points. Figure 3 shows the 95% confidence interval (CI) for the
wall coefficient of friction using three sets of data: (1) the FOM solution on the training set, (2) the FOM solution on
the training set and the ROM prediction on the test set, and (3) the FOM solution on the training and test set. The third
dataset is used as the “true” data set. With only the information that the FOM solution on the training points provides,
the 95% CI for the wall coefficient of friction has a much larger range than the true 95% CI range. When the ROM
prediction on the test set is included into the dataset with the FOM training set, the 95% CI range matches the range of
the “true” dataset, i.e., the ROM provides valuable information that helps capture the true range.

For this flatplate case, we showed that a Galerkin entropy ROM was able to match the “true” distribution of the
wall coefficient of friction and predict the average wall coefficient of friction with an 𝑅2 value of 0.99. A GP model
performed similarly to the Galerkin entropy ROM for the same training set size of 16. In this next section, we will
examine the effect of the size of the training set on the accuracy of the ROM and the GP model.

C. Wall-mounted hump with separated flow
A wall-mounted hump with a separated flow was selected as the second test case [34]. For this case, the reference

freestream velocity is 34.6 m/s and reference temperature is 537 R. The Reynolds number based on chord for this flow is
936,000. The chord of the bump is 420 mm and the incoming fully turbulent boundary layer thickness is approximately
8% of the chord. The upper boundary is a slip boundary and the bottom boundary is a no-slip wall boundary. At the
inlet, total pressure over the reference pressure is 1.007 and the total temperature over the reference temperature is
1.002. The static pressure over the reference pressure at the outlet is 0.99962. Figure 4 shows the computational grid
for the wall-mounted hump. A no-slip boundary condition is used for the bottom wall and a slip boundary condition
is used at the top wall.

Given its superior accuracy, only the Galerkin formulation using entropy variables is presented for this problem.
Because the residual minimization ROMs were found to be less accurate than the entropy Galerkin formulation, they
are omitted from this section. To further alleviate the difference in scaling and reduce numerical stiffness, the basis
was again split between the turbulent viscosity and the other conserved quantities as described in Eq. (5).

For comparison, a Gaussian Process regression (GP) model was created to compare the performance of the ROM
to a standard surrogate. A varying number of training points were used to train both the GP model and the ROM where
both the GP model and the ROM used the same training points each time. Both models were tested on the same set of
test points used before. This GP model used the same kernels as the GP model used for the flatplate.

For this benchmark case, seven SA turbulent coefficients were varied: 𝜎, 𝑐𝑤2 , 𝑐𝑤3 , 𝑐𝑏1 , 𝑐𝑏2 , 𝑐𝜈1 , and 𝜅. The
ROM was trained using 16 training points sampled using LHS and then predicted solutions at 200 test points also
sampled using LHS. Figure 5 shows the ROM prediction of the posterior distribution, the 95% CI and mean, of the wall
coefficient of friction against the “true” distribution, which is the FOM solutions on the test set. At sixteen training
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(c) Galerkin Entropy ROM with Split Basis

Fig. 2 Prediction of wall coefficient of friction over a zero pressure-gradient turbulent flatplate using three
methods: (a) an LSPG ROM with no residual scaling, (b) an LSPG ROM with a k-NN mean residual norm
scaling, and (c) a Galerkin entropy ROM with a split basis.

points again, the ROM prediction of the distribution matches that of the “true” distribution and predicts an average wall
coefficient of friction with an 𝑅2 value of 0.997 when compared to the FOM solution. At sixteen training points, the
ROM and the GP model have so far predicted at 𝑅2 values greater than 0.9 for both the flatplate with four SA turbulent
coefficients varied and for the wall-mounted hump with seven SA turbulent coefficients varied. For the next analysis,
we reduced the training set size to analyze the accuracy of the ROM and to understand the dependence of the ROM’s
and the GP model’s accuracy on the size and spread of the training points.

Table 2 summarizes the relative error, 𝜖 , and 𝑅2 values across all training samples within a set of the ROM and
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Fig. 3 Posterior distribution of the wall coefficient of friction for different data sets.

Fig. 4 Wall-mounted hump computational grid

GP model predictions of drag and average wall coefficient of friction over the hump to the FOM results. The training
points were generated using LHS. Because of the randomness of LHS, two distinct sets were created for each number
of training points. This reduces the likelihood that the randomly selected set of training points are located on spots
in the parameter space that provide no useful information to the models and should also provide a better picture of
how the models perform. The ROM result in Figure 5 is trained using the first row in the 16 training set size. As
shown in Table 2, the ROM is more accurate than the GP model for a fewer number of training points. There are a few
observations to point out here: (1) the ROM is more robust to the spread of the training points than the GP model and
(2) the ROM is able to achieve a fixed accuracy level with fewer training samples than the GP.

For point 1, the GP model has varying performance within a set for a given number of training points. For example,
for seven training points, the GP model is able to predict drag and the average wall coefficient of friction above an 𝑅2

value of 0.5. With that same number of training points but a different selection, the GP model is unable to predict
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Fig. 5 Posterior distribution of the wall coefficient of friction for a wall-mounted hump.

Drag Avg Wall Coefficient of Friction
No. of Training Points

𝜖ROM 𝜖GP 𝑅2
ROM 𝑅2

GP 𝜖ROM 𝜖GP 𝑅2
ROM 𝑅2

GP

21.98 21.99 −0.101 −0.101 31.78 32.67 −0.099 −0.097
2

8.40 19.64 0.820 −0.004 12.40 28.83 0.786 0.000
7.33 20.35 0.801 −0.007 13.45 29.48 0.663 −0.002

4
7.87 17.80 0.818 0.177 14.91 26.54 0.708 0.153
5.25 18.21 0.861 0.122 10.06 26.14 0.846 0.150

6
2.69 8.97 0.977 0.776 5.16 14.14 0.956 0.742
4.19 11.30 0.938 0.632 6.94 18.00 0.926 0.526

7
2.72 19.36 0.969 −0.019 12.54 27.93 0.787 −0.022
2.26 7.41 0.985 0.848 3.93 11.04 0.979 0.836

8
1.44 10.14 0.992 0.680 3.46 15.67 0.981 0.645
1.57 1.51 0.992 0.994 2.65 2.36 0.989 0.991

10
2.71 1.10 0.973 0.996 6.61 2.43 0.940 0.991
0.88 1.35 0.997 0.994 2.27 2.81 0.991 0.988

16
1.81 1.44 0.997 0.993 1.81 2.30 0.991 0.991

Table 2 𝑅2 value and relative error comparison of the ROM and GP model to the FOM for drag and average
wall coefficient of friction over the hump.

better than the mean of the test data. The ROM similarly struggles for this same set of training points, but predicts
consistently above an 𝑅2 value of 0.7 within the seven sample training set size and consistently above an 𝑅2 value
of 0.6 when using three or more training points. It is clear that the GP model has more sensitivity to the placement
of the training points than the ROM, which is likely because it is a data-driven surrogate model whereas the ROM
incorporates knowledge of the underlying physics based on its formulation.

With just two training points, the ROM is able to predict solutions for drag and average wall coefficient of friction
with an 𝑅2 value around 0.8. To better understand why the ROM is able to perform so well with so few training
points, the ROM prediction for drag was plotted over the contour of the “true” values of drag (true taken to be the
FOM solution) for the set of two training points in Figure 6. This contour represents a slice of a seven-dimensional
parameter space highlighting the interaction between 𝜅 and 𝜎 on drag. We will refer to these sets as 2a and 2b where
2a refers to the first row and 2b refers to the second row of the "2" row in Table 2. Here, the square markers represent
the location of the training points. For the 2a training set, the training points are located at points that share similar
drag values. This training information does not convey any information on the shape of the drag surface. Therefore,
the ROM predicts mostly constant solutions around the parameter space. For the 2b training set, the training points
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happen to be located at local maxima and minima points on the drag surface, which conveys some information on the
shape of the drag surface. One would expect the ROM to follow a linear surface prediction based on the size of the
training set, but the ROM is able to predict solutions outside of the parameter space it was trained and even predict
other local optima.
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Fig. 6 Comparison of the ROM solution to the FOM solution of drag for a set of two training points.

Figure 7 compares the distribution and the probability density function (PDF) of the ROM and GP model results
of drag along the wall-mounted hump to the “true” solution, i.e., the FOM results, for training sets 7a, 8a, and 10a.
These sets were chosen because they had the highest 𝑅2 values for drag for both the ROM and the GP model. As
the number of training points increase, the ROM and the GP model converge to the FOM solution. The ROM starts
out with a distribution that is already close to the FOM solution at seven training points, but the mode for its drag
prediction is shifted from the FOM’s mode. This is corrected at 8 training points. The GP model predicts a mode for
its drag distribution that is always aligned with the FOM’s mode, but the GP model over predicts the frequency and
under predicts the standard deviation of the drag distribution. At ten training points, both the ROM and the GP model
closely match the FOM.

Figure 8 shows a correlation matrix of the SA turbulent coefficients to the average wall coefficient of friction from
the ROM results. The ROM here was trained using the 10a set of training points and predicted solutions at 200 test
points sampled using LHS. The correlation matrix was created from the test data. The bottom and right columns
show the main effects of each turbulent coefficient on the average wall coefficient of friction and the interior rows and
columns show the interactions between coefficients. Overall, most of the coefficients have small main and interaction
effects on the average wall coefficient of friction. Of note are the coefficients 𝜅 and 𝑐𝜈1 . Physically, the main effects of
both coefficients make sense. The coefficient 𝜅 is tied to the diffusion and destruction terms in the SA equations. An
increase in 𝜅 leads to smaller diffusion and destruction terms, which leads to a larger SA viscosity. The coefficient 𝑐𝜈1

has a negative effect on the 𝑓𝜈1 term, which appears in the calculation for the turbulent eddy viscosity. As 𝑐𝜈1 increases,
𝑓𝜈1 decreases and thus will decrease the SA viscosity.

In this wall-mounted hump case, we showed that a Galerkin entropy ROM was more robust to the size and spread
of the training points than a GP model; the ROM was able to consistently predict drag and average wall coefficient
of friction with an 𝑅2 value above 0.8 when using a minimum of six training points while the GP model required 10
training points. We showed that the ROM could predict drag and average wall coefficient of friction above an 𝑅2 value
of 0.7 when using two training points if the training points are placed in unequal regions. Finally, we showed that the
ROM predictions made physical sense when examining the effects of each SA turbulent coefficient on the SA viscosity.
In this next section, we will examine the computational expense of running both the ROM and the GP model.
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Fig. 7 Comparison of the posterior distribution and PDF of the ROM and GP model results of drag to the
FOM solution using different training set sizes.
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Fig. 8 Correlation matrix of the SA turbulent coefficients to the average wall coefficient of friction for 10
training points.

D. Computational Expense
The benefits of using a ROM or any surrogate model is that they are computationally inexpensive to run compared

to the FOM. Depending on how the ROM is formulated or developed, it may run slower than most data-based surrogate
models. To assess the performance of the ROM in this respect, the computational runtime of the ROM is compared
to a Gaussian process regression model. The runtime is broken down into the offline phase and the online phase. For
reference, the FOM runtime is included. It is important to note that the ROM solves for q̂ : D → 6𝑝 while the GP
model solves for fGP : RD → R (i.e., the GP only predicts the quantity-of-interest while the ROM predicts the entire
solution field within a low-dimensional subspace), so the CPU run times of the GP model can be a lot smaller than
that of the ROM. The ROM can predict multiple QOIs at each cell center in the computational domain in a single run
while a separate GP model has to be created for each QOI at each cell-center. Table 3 summarizes the CPU runtimes
of all models for both the turbulent flatplate and the wall-mounted hump cases. For both cases, the ROM and the GP
model were trained using 16 FOM snapshots.

Flatplate Wall-Mounted Hump
Offline [s] Online [s] Total [s] Offline [s] Online [s] Total [s]

ROM 13.56 67.79 81.35 12.24 430.16 442.40
GP 0.15 0.01 0.16 0.11 0.01 0.12

FOM - 956.08 - 93,704.33

Ratio of ROM to FOM - 11.75 - 211.81
Ratio of GP to FOM - 5832.19 - 792,561.09

Table 3 Computational runtime of all models.

The ROM is an order of magnitude faster than the FOM and the GP model is three orders of magnitude faster than
the FOM. Looking at Table 2, we can see that the ROM was able to predict both drag and the average wall coefficient
of friction with a consistent 𝑅2 value greater than 0.8 starting at six training points while the GP models required
greater than 10 training points to predict a consistent 𝑅2 value greater than 0.8. At six training points, the total cost
of training and using the ROM to predict drag and average wall coefficient of friction for 200 test points is simply
the cost of running the FOM for six training points, performing the offline step once, and performing the online step
200 times: 367,158 seconds. At ten training points, the total cost of training the GP models and predicting drag and
average wall coefficient of friction over 200 test points is the cost of running the FOM for ten training points, training
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two separate GP models for drag and average wall coefficient of friction (two offline costs), and using both models to
make predictions (400 online costs): 937,048 seconds. The larger offline cost of training the GP model relative to the
ROM exceeds its advantage over the ROM in its online cost.

It is important to note that the ROM used here is not necessarily optimized for runtime. There are two main areas
in which the ROM’s computational runtime can be improved: the computation of the action of the Jacobian on a vector
in the Newton solve and the use of hyper-reduction. In the present work we employ Newton’s method with a direct
solve for the Galerkin ROM. We compute the reduced Jacobian employed by Newton’s method in a two-step manner:
first we compute the action of the Jacobian J on the basis ΦΦΦ via a matrix-free finite difference scheme and second we
compute the reduced JacobianΦΦΦ𝑇 JΦΦΦ. This approach is inefficient as computing the product JΦΦΦ via a matrix-free finite
difference approach scales with the number of reduced states. For the Galerkin ROM we could alternatively employ a
matrix-free Newton–Krylov method which only requires the action of the reduced Jacobian on a vector, i.e., we only
require ΦΦΦ𝑇 JΦΦΦa for some vector a. This term can be computed in a matrix-free manner with only one or two residual
calls depending on the scheme; see the discussion in Ref. [36] for more details.

It is also well known that the calculation of the residual (6) scales with 𝑁 , which inhibits the speedup of the ROM.
Hyper-reduction can be utilized to reduce this cost by approximating the calculation of the residual or of ΦΦΦ𝑇 𝒓 when
solving the ROM [37–40]. There is also a cost associated with using a FOM that does not use the same variable
formulation as the ROM. Because of this difference in formulation, the ROM had to add a variable transformation in
its call for the residual at each iteration step, which increased its computational expense.

VI. Conclusions
In this work, we used a projection-based reduced-order model to propagate the uncertainty of the SA turbulent

coefficients on two quantities of interest, drag and the wall coefficient of friction. We applied the ROM for two
benchmark RANS cases: a zero pressure-gradient turbulent flatplate and a wall-mounted hump with separated flow.
We considered two ROMs: a Galerkin ROM discretized in entropy variables and a least-squares residual minimization
ROM. The least-squares residual minimization ROM employed three weighted norms: (1) a norm based on the mean
absolute value of the variables, (2) a norm based on the mean residual norm of the variable, and (3) a norm based on a
k-nearest-neighbors prediction of the residual norm for the variable.

The turbulent flatplate case compared both ROMs and their respective norms by varying four SA turbulent
coefficients: 𝜎, 𝑐𝑤2 , 𝑐𝑤3 , and 𝑐𝜈1 . The Galerkin ROM discretized in entropy variables performed the best with an 𝑅2

value (comparing to a respective FOM solution) of 0.991 for the average wall coefficient of friction. A GP model was
created from the same training set and performed similarly to the Galerkin entropy ROM with an 𝑅2 value of 0.988
for the average wall coefficient of friction. The residual minimization ROM performed poorly: the norm based on
the mean absolute value of the variable predicted a posterior distribution similar to when no scaling was used and the
norms based on a mean residual and k-NN scaling, while predicting a wider 95% CI than using no scaling, predicted
an average wall coefficient of friction with a negative 𝑅2 value. The Galerkin ROM discretized in entropy variables
was used for all further results.

We analyzed whether the ROM provided any useful information to the posterior distribution of the wall coefficient
of friction that the FOM training points did not already have. It was found that the information found in the FOM
training points, which consisted of sixteen FOM snapshots, was not sufficient to match a “true” posterior distribution,
true taken to be 216 FOM snapshots, of the wall coefficient of friction. When using the information from the FOM
training points and the ROM predictions at two-hundred test points, the predicted posterior distribution matched the
“true” posterior distribution of the coefficient of friction.

In the wall-mounted hump case, we examined the effect of training set size and spread on the accuracy of the ROM
and GP model predictions by varying seven SA turbulent coefficients: 𝜎, 𝑐𝑤2 , 𝑐𝑤3 , 𝑐𝑏1 , 𝑐𝑏2 , 𝑐𝜈1 , and 𝜅. We found
that the ROM was more robust to the size and spread of the training points compared to the GP model: the ROM was
able to predict a consistent 𝑅2 value above 0.8 using a minimum of six training points while the GP model required
ten training points. The ROM was also able to predict both drag and average wall coefficient of friction with an 𝑅2

value of above 0.7 when using two training points. We found that the placement of the training points at such a small
training set size had a larger impact on the accuracy of the ROM: when the training points were placed in regions that
had similar values of drag then the ROM predicted poorly with an 𝑅2 value of -0.101 and when the training points were
placed at a local maxima and minima then the ROM predicted drag with an 𝑅2 value of 0.82. We also showed that
the ROM predictions made physical sense: the effect of the SA coefficients on the average wall coefficient of friction
matched what would be expected based on the physical meaning of each term in the SA equations.
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Finally, we examined the computational expense of the ROM, the GP model, and the FOM. The ROM was an order
of magnitude faster than the FOM and the GP model was three orders of magnitude faster than the FOM. Thanks to the
robustness of the ROM to the size and spread of the training points, the ROM is more computationally efficient to use
than a GP model. For example, in the wall-mounted hump case the ROM required six training points to predict above
an 𝑅2 value of 0.8 for drag and the average wall coefficient of friction while the GP model required ten training points.
The ROM at six training points is around 2.5 times faster than a GP model at ten training points when considering the
FOM cost for each training point and the offline and online costs for the ROM and GP model. A cost analysis of using
the ROM compared to using a GP model (or any other surrogate model) may be beneficial if shown for additional
benchmark cases. It was clear from the wall-mounted hump case that the sensitivity of the drag and the average wall
coefficient of friction to the SA coefficients were not high. The ROM may show better cost benefits for a case that has
a larger uncertainty or sensitivity of the QOIs to the SA coefficients.

Future work will focus on improving the computational efficiency of the ROM. Incorporating matrix-free and
hyper-reduction approaches into the ROM will reduce its computational expense. However, we will investigate whether
these methods have a significant impact on the ROM’s accuracy. A cost-benefit analysis will be beneficial here
to determine whether a loss in accuracy is made up for by the decrease in runtime of the ROM. Furthermore, the
uncertainty introduced by using a ROM instead of the FOM was never accounted for in this paper. Accounting for this
model uncertainty could further decrease the amount of FOM snapshots required to train the ROM and improve the
overall computational expense.

A. Definition of governing equations
This work considered solutions to the Favre-averaged Navier–Stokes equations closed with the Spalart–Allmaras–

neg (SA-neg) turbulence model defined on the spatial domain Ω ⊂ R3. The system of equations can be written in
conservative form as

∇ · 𝑭 (𝑼) − ∇ · 𝑭𝑣 (𝑼,∇𝑼; 𝝁) = 𝑺 (𝑼,∇𝑼; 𝝁) (14)

where 𝑼 =
[
𝜌, 𝜌𝒖̃, 𝜌𝐸̃, 𝜌𝜈̃

]𝑇 : Ω → R6 is the state comprising the Reynolds-averaged density, and Favre-averaged
momentum, total energy, and 𝜈̃ is the SA viscosity. The inviscid and viscous fluxes are given by

𝑭𝑖 (𝑼) =



𝜌𝑢̃𝑖

𝜌𝑢̃𝑖 𝑢̃1 + 𝑝𝛿𝑖1

𝜌𝑢̃𝑖 𝑢̃2 + 𝑝𝛿𝑖2

𝜌𝑢̃𝑖 𝑢̃3 + 𝑝𝛿𝑖3

𝑢̃𝑖
(
𝐸̃ + 𝑝

)
𝜌𝑢̃𝑖 𝜈̃


, 𝑭𝑣

𝑗 =



0
𝜎1 𝑗 + 𝜏1 𝑗

𝜎2 𝑗 + 𝜏2 𝑗

𝜎3 𝑗 + 𝜏3 𝑗(
𝜎𝑖 𝑗 + 𝜏𝑖 𝑗

)
𝑢̃𝑖 +

(
𝑐𝑝𝜇
Pr + 𝑐𝑝𝜇𝑡

Prt

)
𝜕𝑇̃
𝜕𝑥 𝑗

1
𝜎 (𝜇 + 𝜌𝜈̃ 𝑓𝑛) 𝜕𝜈̃

𝜕𝑥 𝑗


The source term is given as

𝑺 (𝑼,∇𝑼; 𝝁) =



0
0
0

𝜌𝑐𝑏1

(
1 − 𝑓𝑡2

)
𝑆𝜈̃ − 𝜌

(
𝑐𝑤1 𝑓𝑤 − 𝑐𝑏1

𝜅2 𝑓𝑡2

) (
𝜈̃
𝑑

)2 + 𝜌
𝜎

(
𝑐𝑏2

𝜕𝜈̃
𝜕𝑥𝑖

𝜕𝜈̃
𝜕𝑥𝑖

)
− 1

𝜎 (𝜈 + 𝜈̃) 𝜕𝜌
𝜕𝑥 𝑗

𝜕𝜈̃
𝜕𝑥 𝑗

𝜈̃ ≥ 0

𝜌𝑐𝑏1

(
1 − 𝑐𝑡3

)
Ω𝜈̃ + 𝜌𝑐𝑤1

(
𝜈̃
𝑑

)2 + 𝜌
𝜎

[
𝑐𝑏2

𝜕𝜈̃
𝜕𝑥𝑖

𝜕𝜈̃
𝜕𝑥𝑖

]
− 1

𝜎 (𝜈 + 𝜈̃) 𝜕𝜌
𝜕𝑥 𝑗

𝜕𝜈̃
𝜕𝑥 𝑗

𝜈̃ < 0


.

In the above, 𝜏𝑖 𝑗 = 2𝜇𝑡
(
𝑆𝑖 𝑗 − 1

3
𝜕𝑢̃𝑘

𝜕𝑥𝑘
𝛿𝑖 𝑗

)
− 2

3 𝜌𝑘̃𝛿𝑖 𝑗 the Boussinesq approximation to the Reynolds stress, 𝜎𝑖 𝑗 =

2𝜇̃
(
𝑆𝑖 𝑗 − 1

3
𝜕𝑢̃𝑘

𝜕𝑥𝑘
𝛿𝑖 𝑗

)
is the viscous stress tensor, 𝑆𝑖 𝑗 = 1

2

(
𝜕𝑢̃𝑖
𝜕𝑥 𝑗

+ 𝜕𝑢̃𝑖
𝜕𝑥𝑖

)
is the mean rate-of-strain tensor, 𝑇 is the Favre-

averaged temperature, 𝜇 is the dynamic viscosity, and 𝜇𝑡 is the turbulent viscosity. In this work we assume a calorically
perfect gas such that the equation of state is given by

𝑝 = (𝛾 − 1)
[
𝜌𝐸̃ − 1

2
𝜌

(
𝑢̃2

1 + 𝜇̃2
2 + 𝜇̃2

3

)]
.
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We note that turbulent kinetic energy is not included in the definition of total energy 𝐸̃ . The turbulent eddy viscosity
is found from

𝜇𝑡 = 𝜌𝜈̃ 𝑓𝜈1 .

The remaining terms in Eq. (14) are given as

𝑆 = Ω + 𝜈̃

𝜅2𝑑2 𝑓𝜈2 𝑓𝜈2 = 1 − 𝜒

1 + 𝜒 𝑓𝜈1

Ω =
√

2𝑊𝑖 𝑗𝑊𝑖 𝑗 𝑊𝑖 𝑗 =
1
2

(
𝜕𝑢̃𝑖
𝜕𝑥 𝑗

−
𝜕𝑢̃ 𝑗

𝜕𝑥𝑖

)

𝑓𝑤 = 𝑔

(
1 + 𝑐6

𝑤3

𝑔6 + 𝑐6
𝑤3

)1/6

𝑔 = 𝑟 + 𝑐𝑤2

(
𝑟6 − 𝑟

)
𝑟 = min

(
𝜈̃

𝑆𝜅2𝑑2
, 10

)
𝑓𝑡2 = 𝑐𝑡3exp

(
−𝑐𝑡4 𝜒2

)

𝑓𝑛 =
𝑐𝑛1 + 𝜒3

𝑐𝑛1 − 𝜒3 𝑐𝑤1 =
𝑐𝑏1

𝜅2 + 1 + 𝑐𝑏2

𝜎
𝑓𝜈1 =

𝜒3

𝜒3 + 𝑐3
𝜈1

𝜒 =
𝜈̃

𝜈
.

where 𝑐𝑛1 = 16 and 𝑑 is the distance from the field point to the nearest wall. There are a total of ten coefficients in the
model: 𝜎, 𝑐𝑤1 , 𝑐𝑤2 , 𝑐𝑤3 , 𝑐𝑏1 , 𝑐𝑏2 , 𝑐𝜈1 , 𝜅, 𝑐𝑡3 , 𝑐𝑡4 .
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