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Sandia Free-Piston Hypersonic Shock Tunnel (HST)
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Target applications include high-
temperature surface chemistry and 
hypersonic thermochemistry.

Tunnel Specifications

H0
 

(MJ/kg)
T0 (K) P0 

(MPa)
2850 4.6 3400 12
4060 9 6000 17

 Nozzle Exit Dia. = 0.36 m
 Test section diameter 0.5 m
 Run times of 1-2 milliseconds
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Survey of Upcoming Experiments in HST
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 HST introduces flow complexities
– Stagnation region gases react
– Gas rapidly expanded through nozzle
– Result: thermal non-eq., NO addition

 Free-stream characterization necessary
– Temperature: CARS for heteronuclear molecules
– Velocity: NO LIF
– 100-kHz data with pulse-burst laser!

 Examine boundary layer products
– Speciation/temperature of CO

• Laser absorption
• CARS (Coherent Anti-Raman Stokes Raman 

Scattering)
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Pulse-burst laser for 100-kHz laser diagnostics4

• Burst-mode lasers have allowed 
experimentalists to access high-speeds 
(10s to 100s of kHz) 
• While powerful, these systems are not 
wavelength tunable—this prohibits 
application of chemically specific imaging 
and spectroscopic tools

BM-pumped, 
tunable 
sources

fixed wavelength!

Wavelength-tunable 
sources enable high-speed 

CARS and LIF
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Coherent anti-Stokes Raman scattering (CARS)
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Coherent anti-Stokes Raman scattering (CARS)
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Free-Stream Characterization: Temperature
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 Free-stream conditions
– Major source of uncertainty in shock tunnels
– Temperature non-eq. in nozzle is expected

 Simulation of nozzle temperatures
– Significant Tv differences between species
– N2 has highest degree of non-eq

 Characterizing temperature non-eq. in HST
– Use CARS to measure Tvib, Trot for N2
– Further improvement needed for Trot
– Next: O2 CARS temp. measurements
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100-kHz nanosecond CARS for HST free-stream
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Cavity Axis
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Noncolinear OPO produces wide spectral 
bandwidth for CARS detection

Shock Tunnel Free Stream

• 2X reduction in 
measurement uncertainty re: 
picosecond CARS

• Good sensitivity to 
thermodynamic 
nonequilibrium

• Improve sensitivity to Trot
• O2 measurements



100-kHz nitric oxide LIF imaging of transient 
flows9

100-kHz NO PLIF Imaging of Cylinder wake startup: U = 2.5 km/s, T = 3000 K

Shock Tube Experiment
• T = 3000 K
• U = 2.5 km/s
• NO concentration ~4%

• M = 9 flight condition at ~130 kft
• Enthalpy ~ 5 MJ/kg
• NO PLIF Visualization over large, 70-

mm field of view



Free-Stream Characterization: Velocity
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TEMPERATURE/SPECIES MEASUREMENTS IN TPS 
BOUNDARY LAYERS
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Shock Tunnel—Resistively Heated Models
• Impulse facility – insufficient test time
• Graphite coupons as TPS surrogate

CO conc.

• Absorption (QCL)
• Pulse-burst CARS
• CO PLIF

IC Plasma Torch Environment
• Long test duration (minutes)
• Low velocity but relevant temperature

Extreme-temperature air

N2

CO

50-mm  3-mm CARS volume

Simultaneous T/CO measurement



Summary and Conclusions
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• Sandia relies heavily on laser diagnostics for 
high-speed measurements in it’s free-piston 
hypersonic facility

• Short-duration, impulsive experiments
• Thermal and chemical nonequilibrium
• Free-stream and near-surface data

• Pulse-burst lasers can be adapted for CARS 
thermometry!

• Pulse-burst PLIF has been applied for flowfield 
imaging and velocimetry  − 4-5% NO!

• Additional laser-based methods include:
• Laser absorption: QCL, VCSEL
• Emission spectroscopy

• Complementary measurement in ICP torch environment



13 100-kHz Pulse-Burst CARS in the Sandia Free-Piston Shock Tube



14 100-kHz Pulse-Burst CARS in the Sandia Free-Piston Shock Tube


