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Particle Shock Interaction…
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▪ Shock interaction with a planar particle curtain is a fundamental physical problem, 
with application for blast/fragmentation, shrapnel dispersion etc.

( Following Frost 2018)



Particle Shock Interaction
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▪ Shock interaction with a planar particle curtain measurement and development

▪ DeMauro et. al. (2019)…

▪ Daniel and Wagner (2022)…

▪ Provides a canonical, geometrically least complex problem…

Following (Ling, Wagner, Beresh, Kearney and Balachandar (2021)



Early-Late Time Asymptotic Drag-Based Models
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▪ Determination of particle curtain dynamics provides insight into 
local drag-dispersion behavior.

▪ The particle curtain width x(t) is described by:

▪ Nondimensionalize:

▪ Expected (non-dimensional) differential equation

▪ “laminar” low Re drag; “turbulent” high Re drag
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Early-Late Time Asymptotic Drag-Based Models
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▪ Flow field is broadly modified by the presence of the particles, freestream 
(velocity) is no longer constant/attainable… modify relative velocity terms 
as (a=1/4):

▪ Yields ODE

▪ Where:

▪ Exact solution

 * *

** **
(1 ) (1 )adx dx

dt dt
 −− → −

 2 * * *
1 1

1 2*2 ** **
(1 ) (1 )

d x dx dx
c c

dt dt dt
 − − 

= + − − 
 

 
1

1 1Red

p

c C




−
 

   
 

 
2 2

p

c C




 
   
 

 
* 1/4 ** 1/4

0

U
t t t 


= =

 
* * *2 1

2 1

ln 1 (1 exp( ))
c c

x t t
c c






 
= − − − − 

 



Early-Late Time Asymptotic Drag-Based Models
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▪ Solution has early and late attributes; leverage

▪ Use a matching argument: function value, slope and curvature we can get 
an estimate parameter:

▪ The constants c1 and c2 are easily estimated empirically…

▪ A traditional Galerkin/collocation procedure model is shown to provide 
similar estimates  c1 and c1… detail in manuscript
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Early-Late Time Asymptotic Drag-Based Models
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▪ Fit of data with measurements De 
Mauro et. al. 2019 shows good 
agreement for a wide range of 
possible c1 and c2 closures…  It’s not 
very sensitive..

▪ The key behavior is not so much the 
particular values of c1 and c2 , but the 
functional form to change the 
asymptotic behavior via:

▪ The matching argument provides 
information for α... Combined with 
the scaling..

▪ Supports the flow behavior
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Streamwise Pressure Difference Shock Particle Curtain Dispersion Models
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▪ A simple force balance based on the pressure difference across the particle 
curtain obviates the use of the drag closure…

▪ To use this model… we need Daniel and Wagner (2022)… 
provide just such a model…

▪ Estimation of the closure constant is our goal.

▪ Approach… leverage classical wind tunnel screen/mesh pressure loss: 
Pinker and Herbert (1967)/ Huang (1991)
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Streamwise Pressure Difference Shock Particle Curtain Dispersion Models
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▪ leverage classical wind tunnel screen/mesh 
pressure loss: Pinker and Herbert (1967)/ Huang 
(1991)

▪ Simple Incompressible…   power law 
approximation

▪ Must be extended to compressible flow, to honor 
inter-particle choking; Empirically..

▪ But this expression is not bounded for choking.. 
We need another model
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Streamwise Pressure Difference Shock Particle Curtain Dispersion Models
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▪ Compressible sudden expansion…

▪ Simple balance of mass, momentum and energy 
balance in compressible form..

▪ Two basic equations…

▪ These expressions are solvable and can be 
mapped to a more convenient closure 
expression as:
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Streamwise Pressure Difference Shock Particle Curtain Dispersion Models
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▪ Build up estimate of  pressure difference

▪ Incompressible term:

▪ Choked flow correction (integral average)

▪ Density ratio (integral average)

▪ Final result…. In good agreement with Daniel and Wagner…  Cmeas=9.6
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Conclusions and Future Work
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▪ Early-Late Time Asymptotic Drag-Based 
Models

▪ Particle curtain spreading well predicted

▪ The key behavior=the functional form to 
change the asymptotic behavior to honor 
drastic change to flow field

▪ Streamwise Pressure Difference Shock 
Particle Curtain Dispersion Models

▪ Pressure difference model (Daniel and 
Wagner (2022) provide useful description

▪ closure constants in good agreement 
with measurement

▪ Future work:

▪ Apply results to shock-physics framework 
e.g. CTH

▪ Support particle shock application space
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