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[Abstract] Here we consider the shock stand-off distance for blunt forebodies using a simplified differential-based
approach with extensions for high enthalpy dissociative chemistry effects. Following Rasmussen [4], self-similar
differential equations valid for spherical and cylindrical geometries that are modified to focus on the shock curvature
induced vorticity in the immediate region of the shock are solved to provide a calorically perfect estimate for shock
standoff distance that yields good agreement with classical theory. While useful as a limiting case, strong shock
(high enthalpy) calorically perfect results required modification to include the effects of dissociative thermo-
chemistry. Using a dissociative ideal gas model for dissociative equilibrium behavior combined with shock
Hugoniot constraints we solve to provide thermodynamic modifications to the shock density jump thereby
sensitizing the simpler result for high enthalpy effects. The resulting estimates are then compared to high enthalpy
stand-off data from literature, recent dedicated high speed shock tunnel measurements and multi-temperature
partitioned implementation CFD data sets. Generally, the theoretical results derived here compared well with these
data sources, suggesting thatthe current formulation providesan approximate but useful estimate forshock stand-off
distance.

Nomenclature
D = local constant
F = local function
G = self-similar function
M = Machnumber
R = bodyradius
U = Pre-shock velocity
o = dissociation fraction, local constant
S, A = standoff distance
€ = shock density parameter
Y = ratio specific heats
p = density
Subscript
b = body
cyl = cylinder
D = dimensional or dissociative
e = equilibrium
eff = effective
s = shock
sph = sphere
1 = pre-shock
2 = post-shock
o = free-stream
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1. Introduction

Stimation of shock stand-off distance forblunt forebodies is a fundamental problem for high enthalpy flow with
direct application to reentry body physical phenomena. As a classical problem, the literature for this problem is
very extensive and is perhaps best discussed by reference to several recent papers (which are important in their
own right) such as Shen and Wen [1] and Sinclair and Cui [2]. Shen and Wen provide an excellent schematic
representation of the physical problem which is repeated in figure 1. The earlier paper by Wen and Hornung [3]
provides essential information for this class of problem with special focus on deviation from ideal gas calorically
perfect behavior. The basic inviscid fluid dynamic problem may be approached in a number of ways including
integral and control volume approaches but here we utilize a differential equation formalism elegantly described by
Rasmussen [4] who examines an inviscid spherical/cylindrical formulation. A related analysis is developed by Hida

[5].

Figure 1. Schematic forshock stand-off distance problem following [1].

The structure of the paper follows with preliminary focus on solution of the self-similar differential equations
describing flow of spherical and cylindrical bodies for calorically perfect problems as described by Rasmussen.
Unfortunately, the Rasmussen formulation yields solutions that are in somewhat poor agreement with known stand
off distance values. However, relatively simple modifications to the expressions with focus on the shock curvature
induced vorticity in the immediate region of the shock offers a much-improved stand-off result. Thermodynamic
behavioris included through a shock jump density parameter.

While a strong shock (high enthalpy) calorically perfect result is possible, it is of rather less utility since high
enthalpy thermo-chemistry will modify the behavior of the flow. Although equilibrium and certainly non-
equilibrium are perhaps best studied using experimental measurement and computational tools, the importance of
this problem spurred the development of simpler analytical tools broadly described by a so-called dissociative ideal
gas model Lighthill [6] and Freeman [7]. Wang et. al. [8] derive approximate but effective expressions for
dissociative equilibrium behavior combined with shock Hugoniot constraints that we approximately solve to provide
thermodynamic modifications to the previously employed calorically perfect shock density jump. Using an

averaging procedure, we compute a best estimate for an effective specific heat ratio ) — 7, which offers an

approximate but simple way to sensitize the calorically perfect model for high enthalpy dissociative effects. The
resulting estimates are then compared to high enthalpy (equivalently high speed) data from literature and more
recent dedicated high speed shock tunnel measurement sources. Additional comparisons are made to CFD
simulations using a multi-temperature partitioned implementation in SPARC (Sandia Parallel Aerodynamics
Reentry Code). Generally, the theoretical results derived here that utilize the effective specific heat ratio compared
well with these data sources, suggesting thatthe current formulation provides an approximate but usefulestimate for
shock stand-off distance. Moreover, the effective specific heat ratio treatment also offers a way to sensitize other
simple calorically perfect models for high enthalpy behavior.
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II. Governing Equations

Following the development of Rasmussen [4] for shocks with an appropriate separable self-similar formulation we
examine spherical and cylindrical coordinate stream function-based expressions.

Spherical Shock

The spherical governing equation can be written:

d*G 2 . (-¢)} ,
T g

Where we define the stream function: | = sin’ 0G(r)with the dimensionless variables: G, = pinRSZG and

1 7
1, =R7r. The parameter gis defined by: & = 'D—‘”with g=— for M >>1, y=— (a common closure
P 6 5

Ps

. . o N . (y-DM; +2

expression). Explicit Machnumbereffectsare evident via the density ratio formalism: & = ———————
(r+DM,
. . .. dG 4 1 '
Equation (1) can be solved using the boundary conditions at the shock: 2 =g G()= 5 The result is:
r r=I1
4e—-1 6’ —Te+1 , (e-1)
G(r):( 2)r2+ : r1+( 2)r4 )
6s 15¢ 10e @

Employing the condition that G(Rb) =0 we have an expression that provides a relationship for Ry, which is the

radial location of the body. This in turn yields a shock standoff distanceas:

o
% _5=1-R,
R G)
-1y de-1 6’ —Te+1
The polynomial result via equation (2) is quintic: %Rbs +( > )Rb3 + > =050 is not
10¢ 6s 15¢
solvable in closed form. However, for & =— we can write the result: R, = 2? whereby we can write:

NG

o0=1-R, =1- 2? ~0.106. A more familiarresult is the shock stand-off distances scaled by body radius as:

NG

5D :R;I—IZT—IQO.IIS

R
We can get a sense of the efficacy of this result by placing it in more traditional variables which are written using

the nose diameter D and scaled by the density ratio: Lo _ & so asto write:

Ps
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sD %D g—l

W= ¢ TR, @

-1
~ & _
Using the preceding results for &£ =1/ 6 we write: A= T(Rb1 —1) = —(£—1) ~0.35. However, the

classical result estimated by measurement is larger than this value and is generally accepted as A

=041,

classic _meas

implying thatthe current result significantly underpredicts the standoff distance.

The source of this discrepancy is associated with the source term of equation (1) which in turn represents the

(1_5)2 2

vorticity due to the curved shock, ie. —————7". This result was derived to be exact at the shock location and is

&
parameterized to be valid further into the shock. However, we propose that the vortical behavior is dominated by

the value immediately behind the shock so that a simpler approximate result follows with: 7, = RD — 7 =150 that

(1-¢) , (-¢) o . A6 2 (l-e)
r-— . The resulting differential equation is: > G ——— (with same boundary
g g ar’ 7 &

conditions gives):

(2+8) 2 3¢” —4e+1
+ 2
9¢

G(r) = r_1+(l_zg)(3lnr—l)r2
9¢

)

2+e) R +36‘2 —4e+1
’ 9¢°

1—
We again compute Ry by solving F(R,,&) = + (9 f) (BInR, —I)R; = 0 which
&

-1
for £=1/6gives: R, =0.87977 so that Asph = %(Rb_l —1) = g(().87977_1 —1) = 0.4100 which is in

excellent agreement with the traditionalresult.

The efficacy of this result suggests that an approximate explicit result for Rb would be of value. By expanding

F(R,,¢)for both R, and &, solving for F(R,,£)=0we can obtain the (very) simple result:

-1
R, ~0.9832—0.6205¢ so that we can write: Ag " _Z ! —1|. This result is in good
” 2 10.9832-0.6205¢

agreement for a range of & values and can be recommended as a useful approximate result for the scaled spherical
shock stand-off distance.

Additional modeling is possible for equation (5) as well. For example, if we replace the variable coefficient term

d*G 2G (-¢) g)

- G such that it takes on its maximum value as: - G- — G sothatwe solve: 5 5
r r R, dar” R, &g

2 2
dr r & (©)

The resulting solution is in terms of exponentialvalues:
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r r l-¢
G(r) = C, exp(\2 R_b) +C, exp(x2 R_b) + % R} o

Ina completely analogous manner, we can use the same boundary conditionsand solve G(7 = Rb) = (to estimate:

-1
R, =0.8793such that: A = %(Rb_l —1) = 2(0.8793" —1) = 0.412 implying good agreement with the

sph

empirical result. We remark, that the current approach provides little benefit over the exact solution procedure
(which is relatively simple), but will be useful when determining approximations for the cylindrical problem,
subsequently.

Cylindrical Shock
The cylindrical problem is formulated in a similar manneras:

d°G 1dG 1 (1-¢)
+———G=—"-—-"G
ar* rdr g ®)

This expression is solvable in terms of modified Bessel functions.  The result is complex and not particularly
informative and is therefore not expressed here. Nonetheless the associated process is precisely the same as before

where G(Rh,é‘):()and can be solved numerically with £=1/6 to give: Rb=0.7933so that
S, R,—-R, 1-R, 1-0.7933

sD

5, ==
R, R, R, 0.7933

~0.2605.

It is helpful at this point to examine the efficacy of this result. Convenient classical results follow from Lobb

(1962) who provides the empirical result: 0, 22(0.5956)8z2(0.5956)%=0.1985. Wen and Hornung

1 1
(1995) use a simplified mass balance argument to show that §cyl = 2(5)8 ~ g =0.167, though we emphasize

that their focus was less on the numerical value as opposed to the massbalance procedure. A method thatis similar
to the differential ~ equation-based result by  Hida [5] offers the limiting value

ie.0,, =2(0.1241)=0.2482 ; M, — . These estimates are all focused on the high Mach number

region where e<<I. A more broadly based examination of the cylindrical shock problem is developed in [2]. From
their results it is apparent that the current model is somewhat low for e<<1 and much too low for e=O(1).

As was the case for the spherical (axi-symmetric) shock front problem, the cylindrical (planar) can be both

(1-¢)’

simplified (setting r=1) but here, the magnitude scaling of the vorticity at the curved shock ———— needs to be

&
modified. The strength of shock behavior for is 2-d problems is known to be accentuated as compared to 3-d
problems where the so-called 3-d relieving effect is absent.  As such we suggest that the current vorticity

(1-¢)’

approximation required overall modification. The current function ———— is based on the vorticity fora curved

&
2
(0
5

shock and for e<<1 ie. M>>1 we have As with the spherical shock problem, this result is

entirely appropriate.
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The other limit for & =1 requires examination of the VOI’tiCity in the presence of weak curved shocks. The current

(d-&) —8) .
——2-sin 19 p —) 0 for £ > 1. We propose, that there is a small non-
X

zero vorticity contribution for zero shock strength for & —> 1, which is not governed by shock dynamics but by
local low speed flow conditions. Indeed, examination of the vorticity associated flow dimensionally scales as

U U

Qoc— —> —=0(1). Let’s consider the potential flow over a 2-d cylinder in polar coordinates where we
bD b

model suggests that the vorticity: { =

R . R .
write: v, =-U(1+ (—b)z)sm 0 and v, =U(1—(—%)*)sin@. Obviously, for potential flow, the general
r

10 0
vorticity expression: Q= ——( rVvy)— —g(vr) uniquely yields €)=0 consistent with the irrotational
assumption. Nonetheless if we linearize the vorticity expression as:
10 R} +r;
Qr=r)~——@Vv,) —— ( ) —M ing. Choosing a plausible estimate for 1o as
”'
r=n 0

R, <1y <2R, implies that: Q(e > 1) = %sin 0.

l—lg

One can then combine these two limiting cases in an expression for the vorticity as: which honors the

2
&

behavior for both &£ =1 and & <<1 We utilize this expression in our analytical model, whereby the associated
differential equation takesthe form:

1
l-—¢
d’G dG 4 B
a e TR 00 2

The resulting expression can be solved to give:

G=c exp(_g;ar)+c2 exp(—_8+ar) ;. a=v\5s"—¢c+4
&

e (10)
. . dG 71 . .
Using the boundary conditions d_ =& G(1) =1 we cansolve G(R,, &) =0 explicitly to give:
r r=I1
(2+g+a}
a—In 27 &
+e—a
R, = . (an
1-R, 1-0.734

Equation (11) gives: R, =0.734 with £=1/6 such that A, = b — 0.73 ~0.361 which better

R, 0.734
spans the empirical solution described previously. Equation (11) in turn can be expanded for small & to give the

convenient expression for O, oy @S
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1

o0,=A_ = -1 ; 1/6<e<l1/2
o TN 0.919-1.172 +0.222¢° (12)
. . .. . . . . . ¢ -1 é‘cle g_l .
There is value in examining the density ratio scale version of this result i.e. Acyl =& E = 75@, which for
. X -1 56 D 6 . .
& =1/6yields: Acyl =& 2yR = 55@, =1.08 much larger as compared the classical spherical result
-1
~Sph = %é;ph ~0.4100. For reference we write the two expressions:
-1
~ £ 1 1
A, =—0  =— - ; l/6<e<l/2
o= %0 =5 G019 11720 700225 ) (13)
and
-1 -1
- & & 1
A =—0  =— -1 ; 1/6<ex<l
ECE TR ) ((19832—4162055 j (14)

|— Cylndrical; y=1.4 — - Sphere; y= 1.4|
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Figure 1. Scaled shock standoffdistance A = 7 O forspherical and cylindrical problems asa function of density

(y—DM: +2

— for y =7/ 5 using the simplified expressions in equations (13) and (14).
(r+DHM;

ratio & =
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Equilibrium Chemistry Effects

The preceding models provide a useful estimate for standoff distance for non-chemically reacting flows. However,
many strong shock, high-speed flow problems are characterized by chemicaldissociation of the constituent gas field,
which significantly modifies standoff problem behavior via the associated density field. The density ratio term

S

P

is the term that we will sensitize for the chemically activated problem. Recallthat fora non-reactingideal

B} +)M
gas we have: &28 ! Zuand that for (y=1.4) M >>1—>&=

P (y-DM; +2 P
ratio is the principal connection to the previous stand-off computations, the goal hearis to derive expressions forthe
density ratio that honor chemistry effects. We emphasize, that we are utilizing the so-called constant density ratio
approximation, whereby the post-shock density ratio is utilized within the standofflayer.

&' = 6. Since the density

An analogous result for the density ratio associated with a chemically reacting non-equilibrium/equilibrium is
possible using a simplified model called an ideal dissociating gas (Lighthill, Freeman etc.). Their formulation is
based upon a dissociation fraction parameter a. The a parameter describes the degree of dissociation at any state

with & =0 implying the absence of chemical dissociation and ¢ =1 complete dissociation. This parameter is in

dcx L T -«

D
scale, and both a dissociation temperature Tp and dissociation density pp are defined. These parametersare given for
several gases with sample values for nitrogen are:
To= 113200K
pp = 1.3E5 kg/m3
Analogous results are available foroxygen as:
Tp = 59500K
pp = 1.5E5 kg/m3

-1
_da C|(p, T o’ , ,
turn governed by a rate equation: — =—| | — |exp(—| — | )— , where L is an appropriate length
yo,

We emphasize, that rate equation associated with equation (16) implies a non-equilibrium condition while for

a P &
—— =0 the system is in equilibrium such that £ exp(—| == | )———.
dx P T, l-a,

e

Deferring the computation of the dissociation fraction parameter, o we can use appropriate shock-Hugoniot
conservation expressions to estimate the density ratio. The (approximate) closures utilized by Wanget. al. [8] takes
the form:

-1

ﬁzg—l_”;-o:l 1— 1_M l

poo u 2 ILI TD
(15)

I ___ #u-a

T, f(s,)+0.55x
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a—0

Where: 'uz2RT . The term f(go)is chosen such that for in equation (17) that

L (y+DM;
& = (}/—1)M2 +2- The explicit solution for f(go) is trivial as:

(y+1° M}
[(y =DM, +2](M. -1) (16)

f(go):4

We emphasize that the first expression in equation (15) follows from the Rankine-Hugoniot expression, but the 22d
is a (useful) empirical result.

Obviously, to utilize equation (15) it is necessary to be able to estimate the dissociation fraction. As indicated
dissociation fraction is governed by equation (16) which balances chemical reaction versus recombination. An

(24
important limiting case is associated with equilibrium whereby — =0such that
X

e

-1
Pp T, an . . iy
— eXp(— T_ )—1 . While one can formulate a fundamentals-based result for &, a semi-empirical
a4
D e

model derived by Wang is probably adequate as:

1+0.011D—0.39

a, = = . D=In(24)
0.0015D% —0.062D+1.8

o0

a7

Unfortunately, equation (17) is not valid for both &, <<land g <<1where equation (19) yields values for

a, < Owhich are physically invalid. To gain a sense of the correct behavior in this limit, let’s examine:

-1
T a’ T -
Lo exp(—| == | )——" with —~ = N by expandingboth sides for ¢, << 1 to give:
] T, l-a, T, 445+0.55a,
0.55u+4.45
1= O94348) o4 10
e e (1 8)
Y7,
. . . . 20,L12 . 2
Which is easily solved to give: a,=———. Notice that forer, oc u° <<l
114+89
2047 . S .
andgr, € ———oC i U >> 1. Thus, we could modify equation (ignoring the effect of DD ) to write:
11+89
2
a,= i 1
(0.001D+1.8) 1 +1 19
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|— ‘Wang et. al. empirical D=In(1E7) — - Asyimptotic model|

0.84

0.74

0.6

0.54

0.4+

0.3

0.2+

equilibrium dissociation fraction o

0.14

~0.1- L

for

Figure 3. Estimates for equilibrium dissociation fractionas a functionof 4 =

D
2

MU
(0.001D+1.8)u+1

D= ln(&) = In(1E7) using equation (19) o, =

0

Using these expressions, we now have a suitable approach to modify the standoff formulation to be valid for
chemically reacting equilibrium flows:

2
gzil_Jl_M "
f

2 (£,)+0.55cx 7 (0.001D+1.8)u+1 (20)
u. oy T

where we emphasize that the parameters D = ln(&) and ff=—2—= _Mi 22 | are known from the free
» 2RT, 2 T,

stream conditions since both O, and TD are known e.g. Tp=113200 K and pp=1.3E5 kg/m3. Equation (20)

provides access to the density ratio as required by our previous standoff models. Let’s plot the corresponding

293

density ratio as function of freestream Mach number for == = ——— D ~11and compare to the ideal case:
T, 113200
P DM? +2
ideal (}/ + I)Mi
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|— Equilibrium Dissociation — - Ideal |

Density Ratio e

2 4 6 & 10 12 14 16 18 20
Freestrearn Mach Number M

, N L o (y=DM; +2
Figure 4. Density ratio £ including equilibrium dissociation compared with ideal case: &, = ——————
(r+DM,,
The derivation of the modified curve presented in figure 4. suggests that one may be able to estimate an effective
ratio of specific heats y — 7, for the preceding curves. Indeed, if one were to compute the integral for equation

(20) as a function of Mach number between M=2 and M=20 and a demand that the effective expression honor this
result, we can write:

2 0y, ~DM2+2 180y, 171
Joar, =292 = [V M43, 107y o
> ; (yeﬁ, +DM 10(7/eff +1)

Equation (21) can be readily solved to give: ,, =1.33. Let’s in turn examine the associated curves as expressed

using this effective value:

e Equiliprium Digsociation —-Ideal
— — Effectivey modely=1.33 Figure 5. Density ratio £ using
oas effective closure with
27 2
g ~OME 42
~ 2
0.301 (7eff +DM
Vo = 1.33

We note, that equation (20)
uses ) as part of the definition

Density Ratio e
(=]
o
o

0-20] of the dimensionless velocity

T
ratio 44 :ZMZ) —= | and in
27\ T,
equation (16) that traditionally
we would use the low enthalpy

result ¥ =7/5 and then estimate an effective specific heat ratio Ve - Obviously, one could use the effective

> 4 6 8 10 12 14 18 18 20
Freestream Mach Number M

result in these expressions so as to obtain a more consistent result. We warn, however, that the formulation for
equation (20) was implicitly based on ¥ =7 /5 and an iterative approach will not be effective. Nonetheless, there
is value in broadly considering the trend associated with solving equation (20) where we introduce:
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(y=DM?:+2
y=—+y'+... We can use the same expression in &=-"—"—""——.
5 (y+HM;

cumbersome, but we can evaluate the result (collocation) for M=10 for both expressions so as to write:

Integration of equation (20) is

7 11 7
01493402682y =+ L s 2T 421,06
V=0 3l TS (22)

Obviously, the result of equation (22) with y = 1.06 is implausibly low (high temperature air is usually bounded as

9 5 , ) . . : .
; ~1.29<y< 5 ~1.67 which we attribute to the semi-empirical nature of equation (20) being formulated for

¥ = —. Nonetheless, the lower value derived in equation (22) suggests that the closure result suggested by equation

(21) and depicted in figure (5) with 7, =1.33 may be slightly too large. We discuss this trend subsequently.

Access to a reliable expression for the equilibrium chemistry sensitized model for the density ratio parameter
& provides a simple and direct method to determine the effect of chemistry on density field and thereby the shock
stand- off distance.

III. Results

Shock Stand-Off Data Comparison

Shock standoff simulation and measurement are available to betterunderstand the efficacy of the models developed
here. A typical problem would involve comparison for measured stand-off distance as a function of velocity or
Mach number. Nonaka et al. [9] performed a suite of ballistic range standoff measurements for hemi-spherical
bodies to provide direct data that demonstrate the effect of dissociative thermo-chemistry for high Mach number

problems. Considering Nonaka’s measurements for the parameter p, R =2.0E£ —4 . Under these conditions for

R=15 mm we estimate the ambient temperature is approximately 350K permitting us to reduce the data sets.

For spherical standoff-behavior, we can combine the previously derived closure expressions to write:

A, 1 1 gN(yeﬁ—l)M;Jrz

R 5(0.9832 —0.6205¢ ) : (7, +DM?

s Ve =133 23)

Which can be directly applied to compare to the Nonaka et al. 1997 data in figure 6. As presented in the figure 6,
there is reasonably good agreement between the theory summarized by equation (2 3) and measurement
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O Measurement Nonaka et, al, 1997
—— Equilibrium: Effective y=1.33
— - Ideal Gas: y=1.4

0.167

0.15- T

0.14+

0.131

0.121

Spherical Stand-off Distance AR

0.11 1 1 1 |
B 7 8 9 10

Freestrearn Mach Number M

Figure 6. Comparison between measurement of Nonaka et.al. 1997 and theory asdescribed by equation (23) for
spherical standoff distance.

A related measurement is described by Lynch et. al. (2022) for a preliminary run for their hypersonic shock tunnel
facility. The flow conditions are for a 7, =3700K, M_=8-9 (we use M_ ~8.5) condition with the

Schlieren depicted in figure 7 demonstratingthe measurement fora spherical body.

~ Flow

B 5 3 P @ Run 185

Figure 7. Schlieren depicting shock stand-off measurement for M ~ 8.5 forshock tunnel flow.

Using equation (23) we can readily estimate the shock standoff distance as presented in figure 8. As shown in the
figure, the standoff distance is over predicted (by about 15% relative error) when using the effective closure

Ve = 1.33. As discussed previously, the value Ve = 1.33 may be slightly too large due to a formulation bias.
We can gain some sense of the effect of slightly smaller value for the effective specific heat ratio by consider a 5%
decrease such that 7., = 1.26. As shown in figure 8. this decrease in the specific heat ratio better estimates the

standofflocation.
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O  Measurement Lynch et, al. 2022
—— Equilibrium; Effective w=1.33
— - Equilibrium: Effective w=1.26=95%(1.33)

0.157

0.14-
0.13—\
0.12-
0.11F o

0.101

Spherical Stand-off Distance AR

0.0%

0.08 1 1 1
7 8 9 10

Freestream Mach Number M

Figure 8. Comparison between measurement of Lynchet.al. (2022) and theory as described by equation (23) for
spherical standoff distance.

The preceding comparisons have focused on spherical body standoff problems, here we examine 2-d standoff
problems. While there are a range of more traditional results in this area, Sinclair and Cui[2] offer a more recent
modeling effort which is especially useful for lower speed problems, i.e. e=O(1). Sinclair and Cui base their model
on a post shock estimate of flow conditions modeled using a classical Newtonian flow argument provides a closed
form result for the shock standoff distance. While perhaps not as convenient as the current results developed here,
the resultant expressions offer a physics-based estimate for standoff behaviorthatis particularly appropriate forlow-
speed conditions. A second model is discussed that employs a linear density field in the post shock region as well.
We plot the standoff distance associated with these two model variants as compared to the result developed here in
equation (13) in figure 9. As shown, equation (13) generally bisects the results associated with reference [2] except
for low Mach numbers implying that equation (13)likely offersa useful result.

Additional comparisons are possible using high performance computing tools such as SPARC (Sandia Parallel
Aerodynamics Reentry Code) [11]. Following [11], SPARC is a compressible computational fluid dynamics (CFD)
code developed to analyze aerodynamics and aerothermodynamics problems primarily for NNSA’s nuclearsecurity
programs. SPARC solves the Navier—Stokes and Reynolds-Averaged Navier—Stokes (RANS turbulence models)
equations on structured and unstructured grids using a cell-centered finite volume discretization scheme. For high
enthalpy applications, SPARC is equipped with a multiple temperature formulation that partitions temperatures
across translational-rotationaland vibrationalcomponents. The traditionaltwo temperature formulation followsthe
Park [12] formalism, but a more complete version that employs energy chemical species sensitized vibrational
results is also available.

Utilizing a two-temperature SPARC simulation over a range of Mach numbers we compare to the Sinclair and
Cui[2] formulation and the current 2-d model using equation (13) for two different values of specific heat ratio y.
As shown, the current formulation current model provides an adequate solution over a range of Mach numbers, but
is incapable of resolving the high enthalpy behavior above Mach 10 as elucidated by the two-temperature model
results.
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Figure 9. Comparison between theory-based model[2], equation (13) and SPARC simulations for cylindrical

standoff distance.

While measurements for high enthalpy flow are generally limited, result from the hypersonic shock tunnel are
available forM=9 and presented in table[1]:

. : Ap
Cylinder standoff distance F

Relative error %

Measurement 0.15 0
SPARC reacting 0.16 7%
Equation (13); y=1.33 0.17 13%

Table 1. Comparison between shock tunnel measurement, SPARC two-temperature modeland

equation (13) for M=9.

Figure 9 suggests that equation (13) appears to be of less use for M<4. We examine supersonic standoff behavior

in greater detail in figure 10.

measurements from [12]and [13].

In addition to the SPARC simulation results, we include classical experimental

Several observationsare apparent as we examine the figure 10:

e Multi-temperature effects are of limited importance for low these Mach numbers and aligns well for the

frozen result.

e The current theory-based model via equation (13) agrees well with data for 2.4<M<6, but under predicts for

M<2.5

e As notedin [2], the theory-based result of Sinclair and Cui performs very well for M<2.5
e The SPARC standoffestimatestend to slightly over-predict the measurements M>2.5

We offer that broadly all of these approaches provide a useable result for moderate to high supersonic conditions
suggesting thatthatthe differential equation-based approached described here is a viable approach.
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Figure 10. Comparison between theory-based approaches, SPARC simulation and experimentalmeasurements[12]
and[13] for cylindrical standoff problem.

The standoff computations described here also allow us to examine the high enthalpy thermo-chemistry models
deployed in SPARC, ie. the more traditional two-temperature vibrational partition model [12] and a diatomic
species dependent multiple temperature formulations (see (15] for an accessible multi-temp discussion). Figure 11.
presents a comparison between the frozen simulation, he two-temperature model and the multi-temperature [5]
species models. As shown in the figure, low enthalpy/Mach number results for all of the computational models
(frozen, two-temperature and multi-temperature honor the calorically perfect models as one would expect. The
two-temperature and multi-temperature results then agree well for high enthalpy/Mach number where all species
tend to vibrationally equilibrate yielding effective two-temperature-like behavior. However, for Mach numbers
below (say) eight, individual species vibrational behaviors are important as reflected in the variation in the two
standoff distances in figure 11 for these conditions.
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Figure 11. Comparison: SPARC simulation using frozen, two-temperature and multi-temperature formulations for
cylindrical standoff problem.

IV. Conclusion

In summary, we have solved a set of classical self-similar differential equations describing flow over spherical and
cylindrical bodies forcalorically perfect thermodynamic conditions as described by Rasmussen [3]. Limitations for
the Rasmussen formulation as compared to classical stand-off results were relaxed by focusing on the shock
curvature induced vorticity in the immediate region of the shock which offered a much-improved stand-off result.
Thermodynamic behavior is included through a shock jump density parameter. High enthalpy thermo-chemistry
modifications were introduced in the simpler model using the so-called dissociative ideal gas model Lighthill [6]
and Freeman [7] with additionalapproximate equilibrium expressions by Wang et. al. [8] to provide thermodynamic
modifications to the previously employed calorically perfect shock density jump. Using an averaging procedure, a

best estimate for an effective specific heat ratio } — 7, was derived which yielded an approximate but simple

way to sensitize the calorically perfect model for high enthalpy dissociative effects. The resulting estimates were
compared to high-speed data from literature and more recent dedicated high speed shock tunnel measurement
sources. Additional comparisons were made to CFD simulations using a multi-temperature partitioned
implementation in SPARC (Sandia Parallel Aerodynamics Reentry Code). Generally, the theoretical results derived
here that utilize the effective specific heat ratio compared well with these data sources, suggesting that the current
formulation provides an approximate but useful estimate for shock stand-off distance. Moreover, the effective
specific heat ratio treatment may also a way to sensitize other simple calorically perfect models for high enthalpy
behavior. Additional effort to explore the connection between the effective y estimated here and its application to
other high enthalpy flow problems may be of value.
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