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Introduction

. Standard deep learning (DL) methods give predictions
without associated measures of uncertainty.

. Developing methods for including uncertainty estimates
along with the powerful prediction capabilities of DL is
currently an active and important area of research.

. High-quality uncertainty quantification (UQ) is a critical
aspect of applying DL methods to high-consequence
applications. Our paper investigates the quality of the UQ
produced by several UQ-enabled DL methods.



Motivating Application

« Our motivating application for this work is the analysis of a
high-fidelity simulated hyperspectral image data set. We are interested
in detecting small targets (green discs of varying size) that have been
placed throughout the images.

« Our models output the estimated probability that a pixel contains
target for each pixel in the image. The UQ-enabled DL methods used
also allow us to construct credible intervals (Cls) for the class
probabilities at each pixel.
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Figure: Example pseudo color rendering of image with green discs (left), zoomed-in region (center), and a single
disc partially obstructed from view (right).



Motivating Application

UQ-enabled DL methods used:

Bayesian neural network (BNN) trained using Markov Chain
Monte Carlo (MCMC). Denoted as BNN-MCMC hereafter.

BNN trained using Variational Inference (VI). Denoted as
BNN-VI.

Deep ensemble with 100 ensembles, denoted as DE.

Bootstrap neural network - computationally the same as
DE except that the training data for each ensemble is a
bootstrap resample of the original training data - with 100
ensembles. Denoted as Bootstrap.

Monte Carlo dropout with 100 ensembles, denoted as MC
dropout.

The network architecture for each of these methods was a fully
connected, two-layer network with 10 nodes per layer.



High Confidence Sets

. We want to know for which pixels the model is highly confident
it has made the correct prediction. To do this, we used the high
confidence sets (HCS's) introduced in Ries et al. [2022].

o The HCS is defined as
Q= {I : (Bm(a)LB >1-0U Bﬂ-i(a)UB < 5)}

where B (a)s and B, (a)ys are the lower and upper bounds of
a (1 —«a)% Cl for mrj, and ¢ is a probability threshold. We use
a=0=0.2

A given pixel is in the HCS if the associated (1 — @)% ClI lower bound
is in the blue region or if the upper bound is in the red region.
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e Daniel Ries, Jason Adams, and Joshua Zollweg. Target detection on hyperspectral images using MCMC and
VI trained Bayesian neural networks. Proceedings of the IEEE Aerospace Conference, 2022. I



Motivating Application Results

Method Proportion of Pixels in HC Set
BNN-MCMC 0.81
BNN-VI 0.27
DE 0.71
Bootstrap 0.78
MC Dropout 0.74

Table: Proportion of test set pixels in HCS for Megascene for each model.

« Our test image contained over 1.5 million pixels. Thus the 10%
difference between BNN-MCMC and DE corresponds to a
difference in HCS size of roughly 150,000 pixels.

o While HCS's can be useful in reducing analyst burden, they rely
on high-quality UQ. The natural question arising from these
results is which of these models is producing the highest

quality UQ?



UQ Quality

Existing metrics for measuring UQ quality:

« Interval coverage - this assesses the central claim of a Cl. Given a large
number of samples, a (1 — )% Cl should contain the true value (class
probability in our case) in (1 — a)% of the samples.

« Interval width - if two methods both produce intervals with adequate
coverage, we say the method producing the narrower intervals is better.

o Expected calibration error (ECE) - measures the difference between
model accuracy and estimated probability values over bins that
discretize the interval [0, 1].

While ECE can be computed for any given classification model,
interval coverage requires knowledge of the ground truth class
probabilities to compute. Interval width without interval coverage is
not meaningful. For this reason, we investigate our methods on a
simulated data set where the ground truth class probabilities are
known.



Simulated Two-class Classification Data Set

Our two-dimensional two-class classification (TCC) data set is
simulated from a transformed Gaussian mixture. The key aspect of
this data set is that ground-truth class probabilities are known at
each (x1,x2) pair. Thus all of our UQ quality metrics can be
computed.
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UQ Quality Metrics Experiment

« All of the same methods, including the same network
architecture, used on the motivating example were trained
on the TCC data. Additionally, we trained a Gaussian
process classification model as a non-DL comparison.

. 100 instances of TCC were simulated and each of the
methods were trained on each instance. Estimated class
probabilities and 90% Cl's were obtained in each instance
on a grid of points over the input space.

. From the estimated class probabilities, interval coverage,
interval width, and ECE metrics were computed. Metrics
are reported as average values over all grid points in all
100 TCC instances. Monte Carlo standard error is also
given.



Simulation Results - Estimated Probabilities
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Figure: Prediction surfaces for each model on one TCC simulation.
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Simulation Results - UQ
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Figure: Uncertainties for each model via 90% prediction interval widths on one TCC simulation.
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Simulation Results

Method Coverage Width ECE

BNN-MCMC | 0.91(0.04) 0.22(0.01)" 0.04 (0.01)
BNN-VI 0.59 (0.17) 038 (0.07) 0.08 (0.02)
DE 048 (0.09) 0.09(0.01) 0.04(0.01)
Bootstrap | 0.84 (0.06) 0.25(0.02) 0.04 (0.01)
MC Dropout | 0.67 (0.08) 015 (0.02) 0.04 (0.01)
GP 0.98 (0.02) 0.36(0.02) 0.05(0.01)

Table: TCC Simulation results. Bolded values indicate best metric in each column. The asterisk indicates the best
interval width, given the nominal coverage was met (nominal rate = 0.9).



Conclusions

In making these conclusions, we first note that the simulated data
and models implemented are fairly simplistic. However, some
concerning issues clearly arise in this experiment, and we do not
anticipate these issues to resolve themselves in the presence of
more complex data or models.

« The Bootstrap NN appears to be providing much higher quality UQ than
the DE. Because the Bootstrap does not require any additional
computational burden beyond a DE, it seems to be a reasonable choice
if higher quality UQ is desired.

« While ECE has been demonstrated to be a useful metric, it is clearly not
telling the whole story. Essentially, it tells us that class probabilities
are being accurately predicted, but it cannot tell us if the variability of
those estimated probabilities is being adequately estimated.



Conclusions

We advocate for caution when using VI. The speedup over
MCMC methods can't be ignored, but in our experience,
expert tuning is needed for VI implementations. Improved
software and VI methodology could be fruitful areas for
future research.

Interval coverage and width clearly convey important
information about UQ quality that is not being captured
by ECE. But because they require ground truth, we also
advocate for further research into the development of UQ
quality metrics that can be used on real data.
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