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Why Scientific ML?

"o " |However...
J-'I ‘1F J
" ' NNs used for SciML don’t have convergence rates, or converge
N only with the number of training points
8 AT NNs used for SciML commit variational crimes, complicating
S & hET error analysis

Images: freeCodeCamp, TensorFlow, SNL (CSandia/EIMS), SNL (CSandia/EIMS)


https://www.freecodecamp.org/news/chihuahua-or-muffin-my-search-for-the-best-computer-vision-api-cbda4d6b425d/
https://www.tensorflow.org/datasets/catalog/mnist

Goal

Construct a trainable approximation scheme that
1. Trains as well as NNs
2. Provides convergence rates
3. Maintains closed-form expressions for integrals




Polynomial-Spline Networks

celis [ Nsplines
y() = Z( Z wayqby(x))(zcaﬁpﬁ(x))

where
* pg are polynomial basis functions of degree Bp
* ¢, are free-knot B-spline basis functions of spline degree B
* w,, are coefficientswhere for all y, X,w,, =1 and entrywisew,, >0

cq,p are polynomial coefficients




Comparison to DNNs

DNNs as max-affine splines
Balestriero, R. “A spline theory of deep learning”, ICML, 2018.
Gupta, K., et al. “Calibration of Neural Networks using Splines”, ICLR, 2021 (poster).

DNNs as P1 finite element hat functions
He, J., et al. ReLU Deep Neural Networks and Linear Finite Elements, J Comp Math, 28(3): 502-527, 2020.

Opschoor, JA., et al. Deep ReLU networks and high-order finite element methods. Analysis and Applications, 18(05):
715-770, 2020.

DNNs as piecewise linear approximations
Arora, R., et al. “Understanding Deep Neural Networks with Rectified Linear Units”, COLT, 2018.

Khalife, S., and Basu, A. Neural networks with linear threshold activations: structure and algorithms, arXiv:2111.08117,
2021.




Comparison to DNNs

Iteration: O
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Video courtesy of Nat Trask, 01442

We take a shortcut:

Instead of ReLU DNN, we construct our splines explicitly
and move the knots during training as in free-spline
interpolation.



Relation to Free-Knot Interpolation

If Bp = 0and N, = Nspiines

Ncetis [ Nsplines N eiis Nsplines
Y@= D Wyt ® €= D D cawaydy )

a=1 a=1

and taking wy, = 8, Yyields
Nsplines

y(x): Z Caqba:(x)

a=1

l.e. we perform free-knot spline interpolation.




Relation to Polynomial Approximation

If Neens = 1,
Nsplines dp dp
y(x) = ( Z wycpy(x))( Z s p,g(x)) =1 ( > o pg(x)> =) pp)
f=1 A=

l.e. we perform polynomial approximation.

Model architecture guarantees at least hp-convergence, since:

» Architecture generalizes of polynomial approximation - p-convergence
» Architecture generalizes free-knot spline interpolation - h-convergence
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Mixture-of-Experts Models

View polynomial-spline networks as a Mixture-of-Experts (MOE) model, where:

« Gating functions form a Partition of Unity (POU) from convex combinations of B-splines

splmes

Pa(x) = Z Wa,y qby(x)

Local experts are polynomials of degree B,
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Approximation with Partitions of Unity

Phase 1: Epoch ©
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Left. POUs constructed using
softmax, as part of a Mixture of
Experts model; each expert’s

model is a quadratic polynomial:

y(x) = Z Pa(X) Pg ()

Right. Mixture of Experts

approximation of piecewise
quadratic function.
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Defining our Partition of Unity

1. Define fine-scale trainable spline knots {ty]y=

1,...Nsplines
( X — t‘y—]_ .
: enli _ —t .
2. DefineB1-splines ¢, (x) = {1 _ X% ¢, ¢ [ty ty41]
by+1 =ty
X 0 else

3. Define trainable convex combination matrix W € RVsnlines*Ncetls constrained so that
0< Wey< 1 Va,y

ZW“’Vz 1 Vy
o

4. Define POU functions ¢, (x) = X, Wy, ¢, (x)
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Exact Integration

On each cell [¢,, t, 1], the polynomial-spline network y(x) is a polynomial of degree Bs + Bp

Nceits [ Nsplines dp
y(x) = Z [ Z Wa,yqby(X))( Z Ca,p pﬂx)) = Z dy q;(x) forx €[ty t, 1]
k

a=1 y=0 =1

where q,(x) = ¢, (x)pg(x) span the product space of Polynomial Experts x POUs.

Choose a polynomial basis and evaluate closed-form expressions for integrals! E.g. for
monomial basis g, (x) = x*,
by+1

[y =Y d [ acwax =Y % (e 1),
k ty K
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Test Problems

= Regression Problems
* (R1) f(x) = sin( 2mx)
= (R2) f(x) = |sin( 3mx? )| + |cos( 5mx? )]
» Loss: MSE

= Variational Problems
* (V1) —d?u=2 onQ=1[0,1] with Dirichlet BCu =0 on 9%
= (V2)—Au =0 onQ=[-1,1]? with Dirichlet BCu = g(r,8) = 7 sin (g) onT, = aQ U [0,1] x {0}
= Loss: Euler-Lagrange Functional - no data necessary!

(VD L@ = [ 1Tl dx +FCu(0) +u())
Q

(V2) L(u) = F 1||Vu 12dx +B | (u —g(r,B))zdS
Jo 2 Ip
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Regression Formulation

Trainable Variables

o Spline knots {ty}‘y:L...,NrPU'i

= convex combination matrix W € RVsptinesXNceiis

Use LSGD' to obtain polynomial coefficients c, 4 at each training step:

y(x) = (TB(x) where B p(x) = (Z wa,,,qb,,(x)) Paco
Y

Then solve least-squares problem for ¢ .
¢ «min|ly —cTd||2
C

1. Cyr, et al., “Robust training and initialization
of deep neural networks: An adaptive basis

viewpoint,” MSML, 2020.
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error

(R1) Smooth Regression Problem
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(R2) Piecewise Regression Problem

h — Refinement Piecewise p — Refinement
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Variational Formulation

Trainable Variables

= spline knots {tV}yzl,...,NrPU'i

= convex combination matrix W € RVsptinesXNceiis

Use LSGD to obtain polynomial coefficients ¢, g at each training step:

u(x) = c"®(x) where ®,p(x) = (Z wa’ycpy(x)) PB(x)
Y

Then solve linear system for ¢ = A~'b, where e.g. for (V2), we have

A= f Vo Vel dx + ddT ds
Jn an
b= f g Pds
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(V1) Smooth Variational Problem

Solution
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(V1) Smooth Variational Problem

Solution Derivative of Solution Error
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(V2) Nonsmooth Variational Problem

Method Mesh Type # Cells Solve Size Lo Error
Poly-Spline Network  Adaptive 16 48 X 48 0.0262
FEM U3 Uniform 18 16 x 16 0.0362
FEM U6 Uniform 72 49 x 49 0.0231
FEM A Adaptive 120 72 X 72 0.0242

* More accurate than FEM on uniform mesh with same size linear system

e Similar accuracy to FEM on uniform mesh with same number of basis elements

 Much smaller linear system than FEM solution using adaptive mesh refinement to obtain
comparable accuracy
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Moving Forward: SciML Applications

» L earn chain complexes, finite element exterior calculus operators
= Structure-preserving NNs for inverse problems

= SciML models for conservation laws, Maxwell's Equations without sampling error, inexact quadrature
= Build efficient formulations for higher order splines for POU construction

= Use VAEs to learn PDE solutions on low-dimensional manifold embeddings

Further reading

= Actor, JA., Huang, A., Trask, N. "Polynomial-Spline Neural Networks with Exact Integrals." arXiv:2110.14055, 2021.

= Actor, JA., et al. “Data-Driven Whitney Forms for Structure-Preserving Control Volume Analysis.”
https://www.researchgate.net/publication/364325736_Data-Driven_Whitney Forms_for_Structure-
Preserving_Control_Volume_Analysis, 2022.
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