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Why Scientific ML?

Traditional ML
 Lots of data
 Structured data: images, text, video
 Model invariant to translation, noise 
 Goal is accuracy
 Classification, correlation, segmentation

Scientific ML
 Small amounts of data
 Unstructured data
 Model invariants of conservation laws
 Goal is accuracy, UQ, V+V
 Simulation for multiscale/multiphysics

Images: freeCodeCamp, TensorFlow, SNL (CSandia/EIMS), SNL (CSandia/EIMS)

However… 

• NNs used for SciML don’t have convergence rates, or converge 
only with the number of training points

• NNs used for SciML commit variational crimes, complicating 
error analysis

https://www.freecodecamp.org/news/chihuahua-or-muffin-my-search-for-the-best-computer-vision-api-cbda4d6b425d/
https://www.tensorflow.org/datasets/catalog/mnist
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Goal

Construct a trainable approximation scheme that
1.  Trains as well as NNs
2.  Provides convergence rates
3.  Maintains closed-form expressions for integrals
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Polynomial-Spline Networks
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Comparison to DNNs

DNNs as max-affine splines
Balestriero, R. “A spline theory of deep learning”, ICML, 2018.
Gupta, K., et al. “Calibration of Neural Networks using Splines”, ICLR, 2021 (poster).

DNNs as P1 finite element hat functions
He, J., et al. ReLU Deep Neural Networks and Linear Finite Elements, J Comp Math, 28(3): 502-527, 2020.
Opschoor, JA., et al. Deep ReLU networks and high-order finite element methods. Analysis and Applications, 18(05): 
715-770, 2020.

DNNs as piecewise linear approximations
Arora, R., et al. “Understanding Deep Neural Networks with Rectified Linear Units”, COLT, 2018.
Khalife, S., and Basu, A. Neural networks with linear threshold activations: structure and algorithms, arXiv:2111.08117, 
2021.
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Comparison to DNNs

We take a shortcut:
Instead of ReLU DNN, we construct our splines explicitly 
and move the knots during training as in free-spline 
interpolation.

Video courtesy of Nat Trask, 01442
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Relation to Free-Knot Interpolation
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Relation to Polynomial Approximation

Model architecture guarantees at least hp-convergence, since:
• Architecture generalizes of polynomial approximation   p-convergence
• Architecture generalizes free-knot spline interpolation   h-convergence
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Mixture-of-Experts Models
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Approximation with Partitions of Unity
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Defining our Partition of Unity
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Exact Integration
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Test Problems
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Regression Formulation

1. Cyr, et al., “Robust training and initialization 
of deep neural networks: An adaptive basis 
viewpoint,” MSML, 2020.
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(R1) Smooth Regression Problem
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(R2) Piecewise Regression Problem
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Variational Formulation
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(V1) Smooth Variational Problem
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(V1) Smooth Variational Problem

Maintains h-refinement 
with number of splines, 
POUs, just like for the 
regression problem!
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(V2) Nonsmooth Variational Problem

• More accurate than FEM on uniform mesh with same size linear system
• Similar accuracy to FEM on uniform mesh with same number of basis elements
• Much smaller linear system than FEM solution using adaptive mesh refinement to obtain 
comparable accuracy
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Moving Forward: SciML Applications

 Learn chain complexes, finite element exterior calculus operators
 Structure-preserving NNs for inverse problems
 SciML models for conservation laws, Maxwell’s Equations without sampling error, inexact quadrature

 Build efficient formulations for higher order splines for POU construction

 Use VAEs to learn PDE solutions on low-dimensional manifold embeddings

Further reading
 Actor, JA., Huang, A., Trask, N. "Polynomial-Spline Neural Networks with Exact Integrals." arXiv:2110.14055, 2021.
 Actor, JA., et al. “Data-Driven Whitney Forms for Structure-Preserving Control Volume Analysis.” 
https://www.researchgate.net/publication/364325736_Data-Driven_Whitney_Forms_for_Structure-
Preserving_Control_Volume_Analysis, 2022. 

https://www.researchgate.net/publication/364325736_Data-Driven_Whitney_Forms_for_Structure-Preserving_Control_Volume_Analysis
https://www.researchgate.net/publication/364325736_Data-Driven_Whitney_Forms_for_Structure-Preserving_Control_Volume_Analysis
https://www.researchgate.net/publication/364325736_Data-Driven_Whitney_Forms_for_Structure-Preserving_Control_Volume_Analysis

