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COINFLIPS: Co-designed Improved Neural Foundations

Leveraging Inherent Physics Stochasticity
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COINFLIPS

* Current approaches in microelectronics
strive to eliminate any unpredictable
behavior across the stack.

* As demand for more compute
increases, relying on classical
computing to scale while meeting
energy constraints is untenable.

* The key scientific goal of COINFLIPS
is to fully leverage stochasticity in
computing by exploiting the
underlying physics of emerging
random number generator (RNG)
devices to build probabilistic neural

architectures.
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COINFLIPS

Probabilistic Neural Computing

Inject ubiquitous stochasticity into existing neuromorphic technologies

Smith et al. 2021 . * Neuromorphic computingis an
Nature Electronics £ . di h .
Deep " Spiking Truly Brain-Derived @8> °©merging paradigm that promises to
Learning | Algorithms Algorithms - alleviate the challenges faced by
s . .
E I oy current classical computing
S . ‘ approaches by emulating key
=4 computational principles from the
< P princip
l brain.

* Probabilistic neural computation (a
novel combination of probabilistic
computing and neuromorphic

| computing.

Hybrid Unknown Future  COINFLIPS will leverage stochasticity

Analog-Digital (3D Architecture, : : b ki hastici

Neuromorphic Novel Devices, ...) n FompUtmg' yma _'ng stochasticity

ubiquitous and make it useful.

Programmable
Hardware

Spiking

Neural algorithms can leverage RNGs in parallel to provide added capabilities to probabilistic
algorithms while leveraging the energy and time advantages of neuromorphic parallelism.




STOCHASTICITY AS A FEATURE NOT A BUG

COINFLIPS

Magnetic Tunnel Junction

Tunnel Diode

gate

P-drain

(@)

Implant

Neuroscientists have observed that stochasticity at the
synapse and circuit scales allows for both synaptic
development and circuit functional dynamics, phenomena that

What probabilistic logic elements that
leverage the intrinsic physical properties of
devices can be developed to provide more

are crucial for higher-level cognitive functions sophisticated probabilistic behaviors?
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COINFLIPS Overview

Lead PI: Brad Aimone (SNL)
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DEVICES: Tunable RNG

MagnetlcﬂTunnel[ unctions & Tunnel Diodes

Tunable random number generator Why did we pick the devices we picked?

sose ) MJ_,.J‘

Large signals

Tunable Integration

hea

20:80
l. Magnetic Tunnel Junction Il. Tunnel diode
gate
I Implant




MAGNETIC TUNNEL JUNCTIONS G..

COINFLIPS

e MTJ consists of an insulating tunnel
barrier between two thin
ferromagnetic layers.

e High or low resistant state depending
on orientation of magnetization of
ferromagnetic layers, P (parallel) and
anti-parallel.

e Devices Tested
— MTJ-SHE (Spin Hall Effect)

— MTJ-VCMA (Voltage Controlled
anisotropy)

Voltage ON Voltage OFF

P stare i .
vw A
: AP srate
A

e Applications in memory, probability-bit device
applications [Camsari et al. 2019] etc.

'

A= =r
Damping & N
Precession  Q()° T=300K (RT) 90°

Cardwell et al., ICRC 2022
Kwon et al., Submitted JxCDC 2022



TUNNEL DIODES
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COINFLIPS

* The tunnel diode (TD) has

historically been used in high-speed
analog applications, and is a great
candidate for a practical nanoscale
random number generator.

* TD consists of a strongly n-doped

and p-doped junction,

and conducts either by tunneling
through or by thermionic

emission over the narrow depletion
region.

Ease of CMOS integration, both
scaled and high-speed devices have
been demonstrated in literature.



COINFLIPS: RNG CIRCUITS

Say we have a given distribution and want a sample from it. There are many ways to approach the same problem

COINFLIPS

1/g

3/20

1/10

1/20

000 001 010 011 100 101 110 111

Tree-approach Sampling -approach P-bits -approach
Fa”m-) Von-Neumann
approach to get a
4's Place @ fair coin Al-
T e enhanced
2's Place \._ <D produce weighted approach ?
O ‘ ‘ coinflip.

1's Place
Tune weight on coinflips «  Fewest number of bits (3 bits for 3-bit precision) * Fewestbits
More devices, but need not have precise *  Need to sample coin many times for fair outcome. * Costly Tunability
tunablllty Only 5 coinflips for a sample. » Coin has unknown weight. Tunability not an issue. 9

2:9:1(31 bits for 5 bit-precision) *  Worst case could require infinitely many coinflips.



PERFORMANCE TRADEFOFFS (F

COINFLIPS

Performance Tradeoffs

T T e Different tradeoffs for different thrusts
Number of Devices
40
o * Tunability/precision/latency/energy
Tuning ! Latency * Different applications will impact

design choices

* Different tasks will prioritize different
domains within the algorithm

- \ | landscape, thus different devices,

P . . .
o circuits and architectures.

Number of Coinflips
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RANDOM NUMBER GENERATION F
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COINFLIPS

* In scientific computing applications
today, uniform random numbers
need to be converted to
distributions of interest through
expensive rejection sampling or
related techniques.

* By using device stochasticity and

codesigned circuits, we can directly
convert biased coin flips to our
distributions of interest, avoiding
repeated sampling loops.
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Al-Guided Design of Neuromorphic Circuits: @

Arbitrary Distribution

Many devices
flipping at one time

‘% 1
e
E 1
\% 3

Al
- Desire Non-Uniform 0 O OM
[I ‘ Flip Biased Coins /\. &
N~ v\/

Sample Non-Uniform

\ Biased coins for non-uniform distribution?

COINFLIPS

Fair coins for uniform distribution
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AI-GUIDED CODESIGN OF PROBABILSITIC CIRCUITS @

COINFLIPS

e We leveraged evolutionary
algorithms for circuit design and
optimization

— LEAP (Library of Evolutionary

Algorithms in
Python)

— EONS (Evolutionary Optimization
. — for
Neuromorphic System)

MNeuromorphic
Computing

& ! .. Y. W2 e We used abstracted device
- > - models for TD and MT]J to capture
functionality and energy usage.

Evolutionary Optimization for Neuromorphic Systems (EONS)
Schuman et al., 2020




PROBABILISTIC MIXING: HIDDEN DEPENDENCE MODEL (l"

COINFLIPS

@ @ l ) ) e Inthe "Hidden Dependence”
model, there is a hidden

L o L .
Plcoint = HandCoinz =#1 =3 process, stochastic or
PlCoint =Hand Com2 =11 = ¢ deterministic, that controls
PlCoin 1 =T and Coin2 = ] = ¢ the probability of heads
P[Coin 1 =T and Coin2 = H] = ¢ among a collection of coins.
e The hidden process chooses
which set of coins is flipped.
wpas + (1= Wpaa; = 5 The observer only sees a
wpi(1 = 42) + (1~ w)p(1 - 02) = & single set, the effective
w(l — p)gs + (1 —w)(L - P)gz = = ﬂlpplng set.

6
1

w(l=p)(1=-q)+A-w)(A=p)(1—gq;) = 3
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Empirical distribution using TD for 2000
samples in a single run
T D RN G C I RC U I T 4-sided Die Histogram 2000 Samples

COINFLIPS
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* We selected the device
configuration for lowest KL-
divergence value through
optimization over 1000
generations in LEAP.
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* Increasing the number of oo | _Y e .
samples lowers the KL- Bins

KL divergence and energy usage vs. number of samples

diverge_n_ce fr_om_ the _deSired for the given distribution
probability distribution. e e
* However, more samples come
at the cost of increased energy o aos .
consumption a3
Ezzz 5" Cardwell et al.,
or ] Ei ICRC 2022
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MT] RNG CIRCUIT

Cardwell et

al., ICRC

We selected the device
configuration for lowest KL-
divergence value through
optimization over 1000
generations in LEAP.
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AI-GUIDED CODESIGN OF PROBABILSITIC @
CIRCUITS

* 20 different sets of weight values
99 99 that were optimized for each device type
o e for wi=7500, w2 =0.005, and w3 =o0.5.
PlCoin 1 = H and Coin2 = ] = * Here, we see that the weights

are customized for the device’s behavior
Plcoin 1 = T and Coin2 = H] = to target the best performance in terms
cont con2 of KL divergence and energy usage.

* One of the challenges in optimizing for

o 2o | PO Fpg] e

R E— P[Coin1 = T and Coin 2 = H] =
™ L 11
Pz i

MT]-VCMA MT]-SHE TD .

1o both algorithms and devices was

08 approFrlater abstracting the device

z 063 models and algorithmic constraints.

g = The functional models developed _

5 02 will also be evolved in time as new device
o data and research emerges.

w pl p2 ql g2 w pl p2 gl q2 w pl p2 ql g2 '

* Our framework can accommodate any

Optimized weight values for each device over emerging device type.

twenty optimization runs using LEAP.
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COINFLIPS: p-bit RNG CIRCUIT EXAMPLE 7

* Probability-based netlist building: Initial framework developed and testing

IS In progress.

4 9 17 31

0.08f

P robability

0 10 20
states

Camsari et al., 2019

MTJ: Magnetic Tunnel Junction
P-bit: Probability-bit

hiaim)

Each node is a p-bit,
represented by a MT)J
device,

*n": control bit

Network using p-bits developed leveraging EONS

Evolutionary Optimization for Neuromorphic Systems (EONS)
Schuman etal., 2020
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AL-ENHANCED CODESIGN ACROSS SCALES (&

COINFLIPS

Device Design Circuit Design System Design Architecture Design Algorithm Design

Approach

In-Memory Computing Cluster

i , Controller I
‘...--"""ﬂ In-Marmory
d y = Computing Unit ~
_ ' | oea | o i|~—]'rHII|_IH]rHi;

i SRiHE oH'se *** [38(BE el I
f - Memory & Logic Memory & Logic
: : Fan (UCF), 2018
Can we gmn, e— - l l
B ey Reward
leverage Al to z P & -
. Lo o Analytical and cycle-
enerate % 2 ‘
; gci i ations B 5 3 A Take__Eraronment accurate tools, network
P i peremeter® simulation tools
for novel Observe state h
devices?

Evolutionary/RL approaches RL approaches RL approaches




APPLICATIONS: NUCLEAR PHYSICS I (F
SIMULATIONS

o1p * For a particular collider physics
| simulation [Pierog et al., Phy Rev.
ooy 2022], ~ 270K pseudo- random numbers
needed for a single event, with billions
of events needing to be simulated.

* CPU time is ~ 40-50% of the total
compute time

0.04

0.02

* Direct random number generation

p leveraging stochastic devices can

PO promise significant energy savings for
such applications

——T==T I o i e =
.
[

Y P 0 Vil Tl P i e o P == ottt et 1,0 o 1]

Deteclor response
Hadronization in n x ¢ space

Misra et al., Advanced Materials 2022
o— —@© | -

/ n , -
| \/ Random numbers are a limiting computational cost for some
@ L -| B nuclear physics applications
v P

arton Hadron Detector Z1
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COINFLIPS

APPLICATIONS: MAXCUT

@E .111010 0 * ? ¢ MAXCUT Applications to
W) —sso—{ - [sing models, VLSI circuit
@“' L layout design, network
.. .101001 design, data analysis, etc.
WD i N g  Neuromorphic
8D —s557 O - Implementation of Simplified
Trevisan and Goemans-
ﬁo ZBZB ZS Williamson Sampling
» The weight vector evolves
X_(> POy S S Sy with Oja’s antihebbian
Mw = —yx+ (2 +1 — wiw)w plasticity rule and converges

to the minimum eigenvector
of the LIF covariance matrix



APPLICATIONS: MAXCUT . e we GF

COINFLIPS
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* A population of n COINFLIPS devices produces random bits.

* The weight matrix COINFLIPS > LIF is proportional to the graph
adjacency matrix. By the central limit theorem, the LIF
membrane potentials approximate a gaussian process with
covariance determined by the weights

\ A A * The weight vector evolves with Oja’s antihebbian plasticity rule
— — — — and converges to the minimum eigenvector of the LIF
w=—-yx+ @’ +1 - www covariance matrix
* Thresholding the output weight vector generates a graph cut.

* Circuit g‘en_erated cuts (orange curve) approach_classical
solver solutions (green curve) 23



Fair coinflip device example — Magnetic Tunnel
Junction (MT)J)

Reset — set metastable state — read
MTJ Coinflip device

T - - - ' AP—P P—AP
s AP ) () A T
et e o it
| 1.0 _‘i;-"l 4K ﬁ
7 osl © % 205K J 4
W g : By Fit ;¥
T A =g a . é
3 06} R .
c Q . s
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L] ) "oa
[ 7] L 1 - f
H B4l 02 I . !_.'
m a &
3l P 0.0} LW N
10 -08 06 -04 04 06 08 10
210 w5 o0 o5 10 Pulse Amplitude (V)
_ ) = Amplitude (V)
40 nm circular pMTJ with CoFeB/W/CoFeB (b)s
composite free layer T Toatn = 295 K
posite free lay 1 pH=0T
B4 o
=
=
32
0

22 24 26 28 30 32 34
Resistance (kQ)
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Quality]of]coinﬂip[direCtly[tied[to[quality[oﬂ

sample

Blocks of 100 random coinflips show expected distribution of random samples
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COINFLIPS
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Generating 8-bit (integers from o — 255) from coinflips produces good random samples
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COINFLIPS TEAM @

COINFLIPS

* Office of Science Co-Design in
Microelectronics program

* (Co-funded through ASCR and BES,
participation by NP, HEP, and FES

* COINFLIPS is partnering with a
growing number of organizations

e Sandia National Laboratories: Shashank Misra,
Conrad James, Darby Smith, Suma Cardwell, Brad
Theilman, Ojas Parekh, Yipu Wang, Chris
Allemang, William Severa

* Andy Kent @ New York University
* Jean Anne Incorvia @ University of Texas Austin

e Katie Schuman @ University of Tennessee

* Prasanna Date @ Oak Ridge National Laboratory
* Les Bland @ Temple University

U.S. DEPARTMENT OF Office of Sandla ((é
@ ENERGY  science @ National

OAK RIDGE

National Laboratory

Laboratories NYU
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