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COINFLIPS:�Co-designed�Improved�Neural�Foundations�
Leveraging�Inherent�Physics�Stochasticity

• Current approaches in microelectronics 
strive to eliminate any unpredictable 
behavior across the stack. 

• As demand for more compute 
increases, relying on classical 
computing to scale while meeting 
energy constraints is untenable.

• The key scientific goal of COINFLIPS 
is to fully leverage stochasticity in 
computing by exploiting the 
underlying physics of emerging 
random number generator (RNG) 
devices to build probabilistic neural 
architectures. 
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Probabilistic�Neural�Computing

Neural algorithms can leverage RNGs in parallel to provide added capabilities to probabilistic 
algorithms while leveraging the energy and time advantages of neuromorphic parallelism.

• Neuromorphic computing is an 
emerging paradigm that promises to 
alleviate the challenges faced by 
current classical computing 
approaches by emulating key 
computational principles from the 
brain. 

• Probabilistic neural computation (a 
novel combination of probabilistic 
computing and neuromorphic 
computing.

• COINFLIPS will leverage stochasticity 
in computing, by making stochasticity 
ubiquitous and make it useful. 

Inject ubiquitous stochasticity into existing neuromorphic technologies

Smith et al. 2021
Nature Electronics
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STOCHASTICITY�AS�A�FEATURE�NOT�A�BUG

Neuroscientists have observed that stochasticity at the
synapse and circuit scales allows for both synaptic 

development and circuit functional dynamics, phenomena that 
are crucial for higher-level cognitive functions
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What probabilistic logic elements that 
leverage the intrinsic physical properties of 
devices can be developed to provide more 

sophisticated probabilistic behaviors? 



COINFLIPS�Overview
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•Achieving High-
Quality and 
Ubiquitous 
Probabilistic 
Devices.

• Leveraging 
Artificial 
Intelligence and 
Numerical 
Simulations as 
Applications

• Linking 
Probabilistic 
Circuits with 
Neural 
Architectures

• Formalizing the 
Paradigm of 
Probabilistic 
Neural Computing.
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DEVICES:��Tunable�RNG�
Magnetic�Tunnel�Junctions�&�Tunnel�Diodes
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MAGNETIC�TUNNEL�JUNCTIONS

• MTJ consists of an insulating tunnel 
barrier between two thin 
ferromagnetic layers.

• High or low resistant state depending 
on orientation of magnetization of 
ferromagnetic layers, P (parallel) and 
anti-parallel.

• Devices Tested
– MTJ-SHE (Spin Hall Effect)
– MTJ-VCMA (Voltage Controlled 

anisotropy)

• Applications in memory, probability-bit device 
applications [Camsari et al. 2019] etc.

Cardwell et al., ICRC 2022
Kwon et al., Submitted JxCDC 2022



TUNNEL�DIODES
• The tunnel diode (TD) has 

historically been used in high-speed 
analog applications, and is a great 
candidate for a practical nanoscale 
random number generator.

• TD consists of a strongly n-doped 
and p-doped junction,
and conducts either by tunneling  
through or by thermionic
emission over the narrow depletion 
region.

• Ease of CMOS integration, both 
scaled and high-speed devices have 
been demonstrated in literature.

Tunnel Diode Characteristics
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COINFLIPS:�RNG�CIRCUITS
Say we have a given distribution and want a sample from it. There are many ways to approach the same problem

000 001 010 011 100 101 110 111

1/20

1/10

3/20

1/5

10

0

0 01 1 1

1 1

00

0

1

1/21/2

3/52/54/51/5

1/2 1/21/2 1/21/2 1/21/2 1/2

4’s Place

2’s Place

1’s Place

Tree-approach

• Fewest bits
• Costly Tunability

Sampling -approach P-bits -approach

• Tune weight on coinflips
• More devices, but need not have precise 

tunability. Only 5 coinflips for a sample.
• (2n-1) devices. E.g.: (31 bits for 5 bit-precision)

• Fewest number of bits (3 bits for 3-bit precision)
• Need to sample coin many times for fair outcome.
• Coin has unknown weight. Tunability not an issue.
• Worst case could require infinitely many coinflips.

Von-Neumann 
approach to get a 

fair coin AI-
enhanced 

approach ?

Then use several 
‘fair’ coinflips to 

produce weighted 
coinflip.

1
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PERFORMANCE�TRADEFOFFS

Different�tradeoffs�for�different�thrusts

• Tunability/precision/latency/energy�
• Different�applications�will�impact�
design�choices

• Different�tasks�will�prioritize�different�
domains�within�the�algorithm�
landscape,�thus�different�devices,�
circuits�and�architectures.
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RANDOM�NUMBER�GENERATION

• In scientific computing applications 
today, uniform random numbers 
need to be converted to 
distributions of interest through 
expensive rejection sampling or 
related techniques. 

• By using device stochasticity and 
codesigned circuits, we can directly 
convert biased coin flips to our 
distributions of interest, avoiding 
repeated sampling loops.
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AI-Guided�Design�of�Neuromorphic�Circuits:�
Arbitrary�Distribution
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Biased coins for non-uniform distribution?

Fair coins for uniform distribution
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AI-GUIDED�CODESIGN�OF�PROBABILSITIC�CIRCUITS

• We leveraged evolutionary 
algorithms for circuit design and 
optimization
– LEAP (Library of Evolutionary 

Algorithms in
Python)

– EONS (Evolutionary Optimization 
for
Neuromorphic System)

• We used abstracted device 
models for TD and MTJ to capture 
functionality and energy usage.

Evolutionary Optimization for Neuromorphic Systems (EONS) 
Schuman et al. , 2020 



PROBABILISTIC�MIXING:�HIDDEN�DEPENDENCE�MODEL

• In the “Hidden Dependence” 
model, there is a hidden 
process, stochastic or 
deterministic, that controls 
the probability of heads 
among a collection of coins. 

• The hidden process chooses 
which set of coins is flipped. 
The observer only sees a 
single set, the effective 
flipping set.



Multi-Objective�Optimization

Multi-objective optimization of weights ω1, ω2, ω3 for optimal 
KL divergence and energy usage of MTJ-SHE devices

Kullback-Leibler 
Divergence

EnergyDifference of weight from a fair coin

FITNESS FUNCTION
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Cardwell et al., 
ICRC 2022



TD�RNG�CIRCUIT
• We�selected�the�device�
configuration�for�lowest�KL-
divergence�value�through�
optimization�over�1000�
generations�in�LEAP.

• Increasing�the�number�of�
samples�lowers�the�KL-
divergence�from�the�desired�
probability�distribution.�

• However,�more�samples�come�
at�the�cost�of�increased�energy
consumption

Empirical distribution using TD for 2000
samples in a single run

KL divergence and energy usage vs. number of samples
for the given distribution
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Cardwell et al., 
ICRC 2022



MTJ�RNG�CIRCUIT
• We�selected�the�device�
configuration�for�lowest�KL-
divergence�value�through�
optimization�over�1000�
generations�in�LEAP.

Empirical distribution using MTJ-VCMA for 2000
samples in a single run

KL divergence and energy usage vs. number of samples
for the given distribution
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Cardwell et 
al., ICRC 
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AI-GUIDED�CODESIGN�OF�PROBABILSITIC�
CIRCUITS

• 20 different sets of weight values
that were optimized for each device type 
for ω1 = 7500, ω2 = 0.005, and ω3 = 0.5. 

• Here, we see that the weights
are customized for the device’s behavior 
to target the best performance in terms 
of KL divergence and energy usage.

• One of the challenges in optimizing for 
both algorithms and devices was 
appropriately abstracting the device 
models and algorithmic constraints. 

• The functional models developed
will also be evolved in time as new device 
data and research emerges. 

• Our framework can accommodate any 
emerging device type.Optimized weight values for each device over 

twenty optimization runs using LEAP.
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COINFLIPS:�p-bit�RNG�CIRCUIT�EXAMPLE

Each node is a p-bit, 
represented by a MTJ 

device,
“n”: control bit

Network using p-bits developed leveraging EONS

• Probability-based netlist building: Initial framework developed and testing 
is in progress. 

Evolutionary Optimization for Neuromorphic Systems (EONS) 
Schuman et al. , 2020 

Camsari et al., 2019
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AI-ENHANCED�CODESIGN�ACROSS�SCALES
Circuit Design System Design Architecture Design

A
pp

ro
ac

h Analytical and cycle-
accurate tools, network 

simulation tools

Evolutionary/RL approaches RL approaches RL approaches

Device  Design

Can we 
leverage AI to 

generate 
specifications 

for novel 
devices?

Algorithm Design

Neural 
Array

Fan (UCF), 2018

0
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APPLICATIONS:�NUCLEAR�PHYSICS�
SIMULATIONS

• For a particular collider physics 
simulation [Pierog et al., Phy Rev. 
2022], ~ 270K pseudo- random numbers 
needed for a single event, with billions 
of events needing to be simulated. 

• CPU time is ~ 40-50% of the total 
compute time

• Direct random number generation 
leveraging stochastic devices can 
promise significant energy savings for 
such applications

21

Misra et al., Advanced Materials 2022

Random numbers are a limiting computational cost for some 
nuclear physics applications



APPLICATIONS:�MAXCUT

• MAXCUT Applications�to�
Ising�models,�VLSI�circuit�
layout�design,�network�
design,�data�analysis,�etc.

• Neuromorphic 
Implementation of Simplified 
Trevisan and Goemans-
Williamson Sampling

• The weight vector evolves 
with Oja’s antihebbian 
plasticity rule and converges 
to the minimum eigenvector 
of the LIF covariance matrix

a

a a
a
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APPLICATIONS:�MAXCUT

• A population of n COINFLIPS devices produces random bits.

• The weight matrix COINFLIPS > LIF is proportional to the graph 
adjacency matrix. By the central limit theorem, the LIF 
membrane potentials approximate a gaussian process with 
covariance determined by the weights

• The weight vector evolves with Oja’s antihebbian plasticity rule 
and converges to the minimum eigenvector of the LIF 
covariance matrix

• Thresholding the output weight vector generates a graph cut.

• Circuit generated cuts (orange curve) approach classical 
solver solutions (green curve)

Theilman et al.;
 Arxiv 2210.02588
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Fair coinflip device example – Magnetic Tunnel 
Junction (MTJ)

Reim et al., Submitted arXiv 2209.01480

MTJ Coinflip device
Reset – set metastable state – read

40 nm circular pMTJ with CoFeB/W/CoFeB 
composite free layer

P

AP
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Quality�of�coinflip�directly�tied�to�quality�of�
sample

Blocks of 100 random coinflips show expected distribution of random samples 

Generating 8-bit (integers from 0 – 255) from coinflips produces good random samples 
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Reim et al., Submitted 
arXiv 2209.01480



COINFLIPS�TEAM
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• Office�of�Science�Co-Design�in�
Microelectronics�program

• Co-funded�through�ASCR�and�BES,�
participation�by�NP,�HEP,�and�FES

• COINFLIPS�is�partnering�with�a�
growing�number�of�organizations
• Sandia�National�Laboratories:��Shashank�Misra,�
Conrad�James,�Darby�Smith,�Suma�Cardwell,�Brad�
Theilman,�Ojas�Parekh,�Yipu�Wang,�Chris�
Allemang,�William�Severa

• Andy�Kent�@�New�York�University
• Jean�Anne�Incorvia�@�University�of�Texas�Austin
• Katie�Schuman�@�University�of�Tennessee
• Prasanna�Date�@�Oak�Ridge�National�Laboratory
• Les�Bland�@�Temple�University
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