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Concept: Manifold Learning / Dimensionality Reduction

2D projection of the swissroll Unrolled manifold
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Given a set of points X € R",

learn a function f: R®™ — RY where g <n

« where neighboring points in X are neighbors in f(X)
« where f(X) captures the important information in X
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We need 3n real
numbers to naively
quantify an atomic
configuration, plus n
integers to encode
species information.

/" Concept: Manifold Learning / Dimensionality Reduction

So imagine we're plotting configs cut out of some material
on axes spanning R3"™ x N.
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Or we can use
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Unstable

We only observe atomic configurations in certain regions of R3" x N.
Enthalpy pulls atomic configurations onto a manifold.
Entropy and kinetics spread atomic configurations out on that manifold.




/ Dimensionality reduction strategy
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P Properties of a Generalized Distance Function

Continuity and Smoothness: the
generalized distance is stable with respect to
small atomic perturbations.

* An atom jumping across the cutoff radius
won't dramatically change the result

Completeness: the generalized distance
between two configurations is zero iff the
two configurations are equivalent.

Rotation Invariance: the generalized
distance is the same regardless of frame.

Permutation Invariance: the distance is
the same regardless of order of atoms.

Tolerates Variable Numbers of Atoms:
calculates meaningful distances between
environments with different numbers of
atoms.

Differentiable: the distance can be
differentiated with respect to atomic
positions. Important for empirical potentials.

Speed: the distance can be quickly
calculated between a pair of atomic
configurations.




,/ Integral inner product
of two functions

Norm of a function induced
by the inner product above

Gaussian function with standard
deviation sigma, normalized to 1

Atomic density function
consisting of weighted Gaussians
centered on atomic positions

Gaussian Integral Inner Product
(GIIP)
between two configurations

Distance between two
configurations can be calculated
with three inner products

Orientation invariance
by minimizing over all possible
rotations/rotoinversions

GlIP is analytically tractable in a
computationally convenient form
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Example: Three-dimensional EAM NiNb metallic glass




Selecting a parsimonious set of diffusion coords for metallic glass
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composition of env. (Xy;)

Diffusion coordinate A is composition of environment
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Diffusion coordinates Band C parameterize local symmetry
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7~ Quench rate impacts structure- but specifics are hazy
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Filling in some details around quench rate and structure

< All four MG samples plotted in diffusion
‘4 space, colored by 20 agglomerative clusters
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/" Final thoughts
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of two functions

Norm of a function induced
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Gaussian function with standard
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/" Understanding the GIIP Distance - One-dimensional Example
@ N A" | Atomic density function for atomic configuration 1
(b) :: i;\ - | Atomic density function for atomic configuration 2

(©) /\ /\ | PAE The GIIP between atomic configurations 1 and 2 is the integral of
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\/ the product of their respective atomic density functions.
(d) n — o , , | _ |
o /\ e N To find the squared GIIP distance between atomic configurations 1 and 2,
take the difference between their respective atomic density functions,
VTNV ) !

square it, and integrate the squared difference.




