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Concept: Manifold Learning / Dimensionality Reduction
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Given a set of points 𝒳 ∈ ℝ𝑛,
learn a function 𝑓:ℝ𝑛 ⟶ℝ𝑞 where 𝑞 < 𝑛
• where neighboring points in 𝒳 are neighbors in 𝑓 𝒳
• where 𝑓 𝒳 captures the important information in 𝒳



Concept: Manifold Learning / Dimensionality Reduction
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We need 3n real 
numbers to naively 
quantify an atomic 
configuration, plus n 
integers to encode 
species information.

We only observe atomic configurations in certain regions of ℝ3𝑛 × ℕ.
Enthalpy pulls atomic configurations onto a manifold.
Entropy and kinetics spread atomic configurations out on that manifold.

We want to 
parameterize 
the manifold.

𝑡3/2

𝑡3

High energy 
configurations

Unstable 
configurations

Overlapping atoms
(Pauli says no)

Or we can use 
clustering to get a 
discrete structural 
parameterization

So imagine we’re plotting configs cut out of some material
on axes spanning ℝ3𝑛 × ℕ.



Dimensionality reduction strategy
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Cut out environments

Compute generalized 
distances between 

pairs of environments

Diffusion Maps
continuous 

parameterization 
of manifold

Hierarchical 
Clustering

discrete 
parameterization 

of manifold

𝒳 =
𝑿1 𝑠1
⋮ ⋮
𝑿𝑛 𝑠2

𝑫 =
𝑑(𝒳1, 𝒳1) ⋯ 𝑑(𝒳𝑁, 𝒳1)

⋮ ⋱ ⋮
𝑑(𝒳1, 𝒳𝑁) ⋯ 𝑑(𝒳𝑁, 𝒳𝑁)

𝑓
𝑿1 𝑠1
⋮ ⋮
𝑿𝑛 𝑠2

=

𝑦1
⋮
𝑦𝑞

(𝑞 ≪ 4𝑛)

𝒳1
𝒳2
𝒳3𝒳4

This is the real 
technical challenge →



Properties of a Generalized Distance Function
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Continuity and Smoothness: the 

generalized distance is stable with respect to 

small atomic perturbations.

• An atom jumping across the cutoff radius 

won’t dramatically change the result

Completeness: the generalized distance 

between two configurations is zero iff the 

two configurations are equivalent.

Rotation Invariance: the generalized 

distance is the same regardless of frame.

Permutation Invariance: the distance is 

the same regardless of order of atoms.

Tolerates Variable Numbers of Atoms:

calculates meaningful distances between 

environments with different numbers of 

atoms.

Differentiable: the distance can be 

differentiated with respect to atomic 

positions. Important for empirical potentials.

Speed: the distance can be quickly 

calculated between a pair of atomic 

configurations.



Gaussian Integral Inner Product (GIIP) Distance
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Integral inner product
of two functions

(1)

Norm of a function induced
by the inner product above

(2)

Gaussian function with standard 
deviation sigma, normalized to 1

(3)

Atomic density function 
consisting of weighted Gaussians 

centered on atomic positions
(4)

Gaussian Integral Inner Product
(GIIP)

between two configurations
(5)

Distance between two 
configurations can be calculated 

with three inner products
(6)

Orientation invariance
by minimizing over all possible 

rotations/rotoinversions
(7)

GIIP is analytically tractable in a 
computationally convenient form

(8)



Example: Three-dimensional EAM NiNb metallic glass
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=Ni

=Nb



Selecting a parsimonious set of diffusion coords for metallic glass
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Diffusion coordinate A is composition of environment
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=Ni

=Nb



Diffusion coordinates B and C parameterize local symmetry
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prismatic

cyclic



Quench rate impacts structure- but specifics are hazy
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Fast quench
Slow quench

Favored by Slow
Favored by Fast



Filling in some details around quench rate and structure
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prismatic

cyclic

Favored 
by slow 
quench

Favored 
by fast 
quench

All four MG samples plotted in diffusion 
space, colored by 20 agglomerative clusters

All four MG samples plotted in diffusion 
space, colored by 20 agglomerative clusters

=Ni

=Nb



Final thoughts
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Gaussian Integral Inner Product (GIIP) Distance
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Integral inner product
of two functions

(1)

Norm of a function induced
by the inner product above

(2)

Gaussian function with standard 
deviation sigma, normalized to 1

(3)

Atomic density function 
consisting of weighted Gaussians 

centered on atomic positions
(4)

Gaussian Integral Inner Product
(GIIP)

between two configurations
(5)

Distance between two 
configurations can be calculated 

with three inner products
(6)

Orientation invariance
by minimizing over all possible 

rotations/rotoinversions
(7)

GIIP is analytically tractable in a 
computationally convenient form

(8)



Understanding the GIIP Distance – One-dimensional Example
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Atomic density function for atomic configuration 2

The GIIP between atomic configurations 1 and 2 is the integral of 
the product of their respective atomic density functions.

Atomic density function for atomic configuration 1

To find the squared GIIP distance between atomic configurations 1 and 2,
take the difference between their respective atomic density functions, 
square it, and integrate the squared difference.


