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> | Cross-Barrier Communication: Motivation

Problem:

Running wires through a
protective barrier
compromises its integrity
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Moisture,
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Solution:
Use the barrier itself
as the data stream conduit
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Complication:

‘|‘ The data stream is now
susceptible to new sources I
of disruption (mechanical) I



« Assume mechanical shock can be modelled as decaying sine

- We are interested in identifying what kinds of shocks produce data disruption
« Points towards a classification problem

« We are only interested in pass/fail
» Points towards a binary classifier

* Physics model may be expensive to evaluate
« Points towards an adaptive approach (sequential learning)
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Chosen Classifier: (Adaptive) Support Vector Machines




+ 1 SVMs and Adaptive SVMs

« Support Vector Machines (SVMs) seek the hypersurface that maximizes separation of

pre-classified samples (supervised)

* In simplest case, data is linearly separable

 When data is not linearly separable, we can map the data to a space where it is

linearly separable

« SVMs provide a closed-form expression for the hypersurface, a convex optimization
problem for training, resiliency to the curse of dimensionality, and straightforward

extensions to adaptive strategies
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s | Problem Workflow
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In addition, explored
several different
levels of shock
amplitude

Increasing exponential decay rate

|
s | Input parameters m
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Increasing shock frequency



7 I Low shock amplitude

Blue = no data loss
Orange = data loss

i,._f— Hypersurface
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s | Medium shock amplitude

Blue = no data loss
Orange = data loss
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Relative exponential decay rate
(decay rate / f_, rier)
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o | Large shock amplitude
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0 | Summary

Cross-barrier communication can maintain integrity of a
protective barrier

* Exposes the communication channel to new sources of
disruption

We formulated this disruption risk as a classification problem
« Used adaptive SVMs to explore the space

SVMs identified sets of shock parameters that lead to data
disruption
« Points towards regions that need to be protected against or
designed around
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Quick Overview of SVMs

12 Credit: W. Aquino

e The SVM training problem in primal form

o 1 5
minimize —||wl|
w,wo 2

S.t. Y; (’UJTQ}i + wo) Z 1 9 = 1, ey 1M

e (General Formulation with Basis Functions

oL 1 5
minimize —| w]|
w,wo 2

st. y (qub(xi) +w0) >1 i=1,...m

e Kernels:

Decision contours
using Gaussian
Kernel




| Classification vs Regression
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Points needed for °
approximating the function
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Credit: W. Aquino

Points needed for
approximating the boundary

Fig. 6. The sampling for approximating the limit state function (black circles) differs from that aimed at approximating

the performance function (white circles).

Credit: J.E. Hurtado, doi: 10.1016/j.strusafe.2003.05.002
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y ‘Algorithm For Decision Boundary Detection

Decision Boundary Estimation
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Credit: W. Aquino

Form the background sel X; by drawing M background samples 2, € X using a
uniform distribution.

Add the lirst. n samples in X3 (o the training sel X, and remove [rom X,

Evaluate the training samples using the physics model as g(x;), z; € Xy, If there is
al leasl. one sample in cach of DT and D~ conlinue.

Otherwise, continue drawing samples from X, and adding to the training sct without
replacement until there is at least one positive and one negative sarple.

While not converged and background samples are available,

1. Train a SVM using the current training set.

2. Lvaluate the decigion function, f(z). from the current SVM on the background
set.

3. Find the two points that ave closest to the boundary on the + and - sides and
denote as a7, a7

4. Evaluate the lalter two points using the physies-hased [uiction as g(rf) and

glx, ).

Add these points to the training set and remove from the background sct.

it

6. Compute convergence metric.




