

Sandia
National
Laboratories

Predicting cross-barrier communication disruption using adaptive Support Vector Machines

Cameron A. McCormick (presenter)

Wilkins Aquino

Chandler B. Smith

Timothy F. Walsh

183rd Meeting of the Acoustical Society of America

Nashville, TN

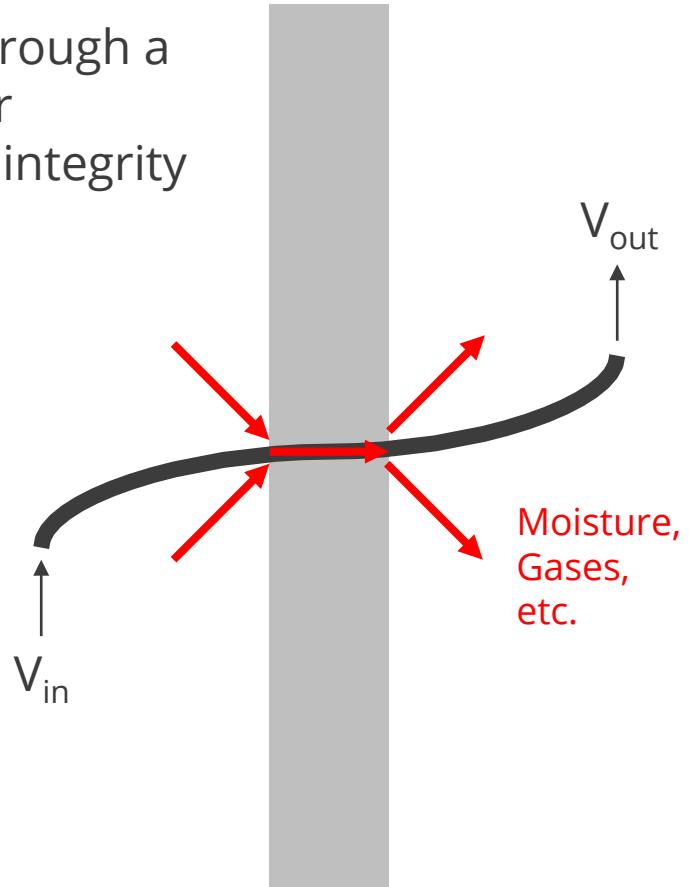
7th December 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Cross-Barrier Communication: Motivation

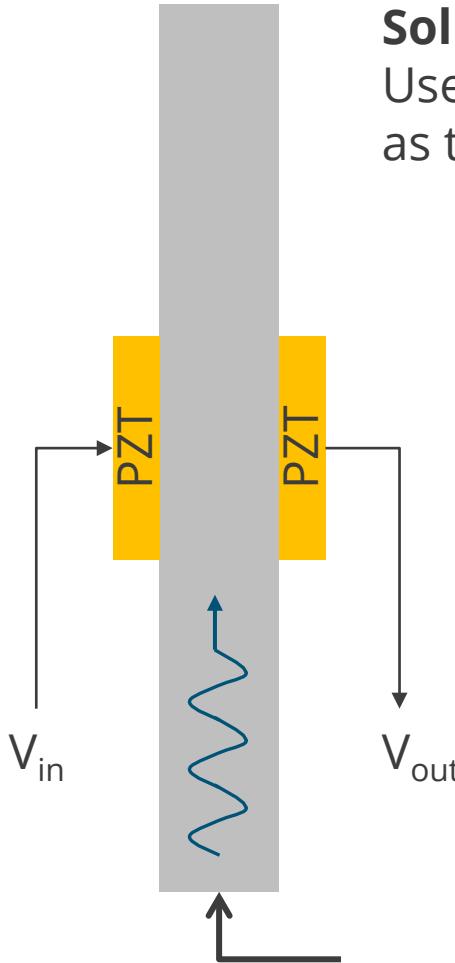
Problem:

Running wires through a protective barrier compromises its integrity



Solution:

Use the barrier itself as the data stream conduit



Complication:

The data stream is now susceptible to new sources of disruption (mechanical)

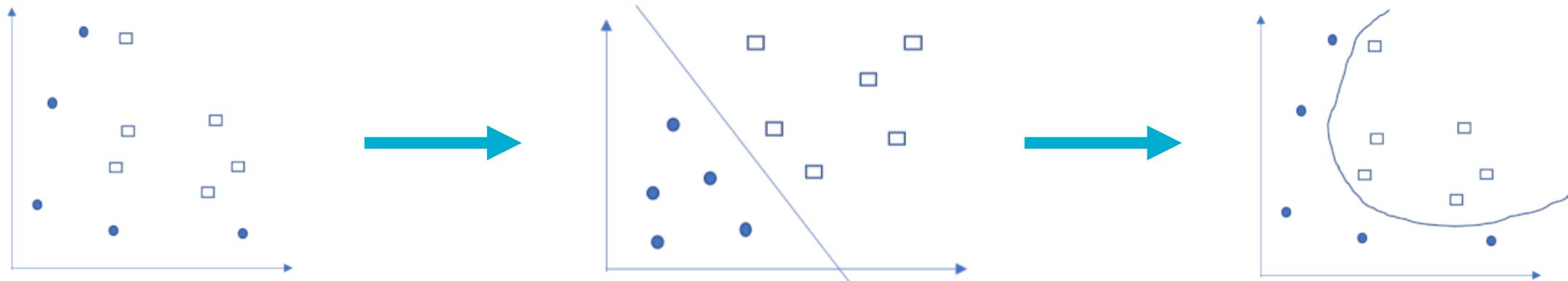
Problem Description

- Assume mechanical shock can be modelled as decaying sine
- We are interested in identifying what kinds of shocks produce data disruption
 - Points towards a classification problem
- We are only interested in pass/fail
 - Points towards a binary classifier
- Physics model may be expensive to evaluate
 - Points towards an adaptive approach (sequential learning)

Chosen Classifier: (Adaptive) Support Vector Machines

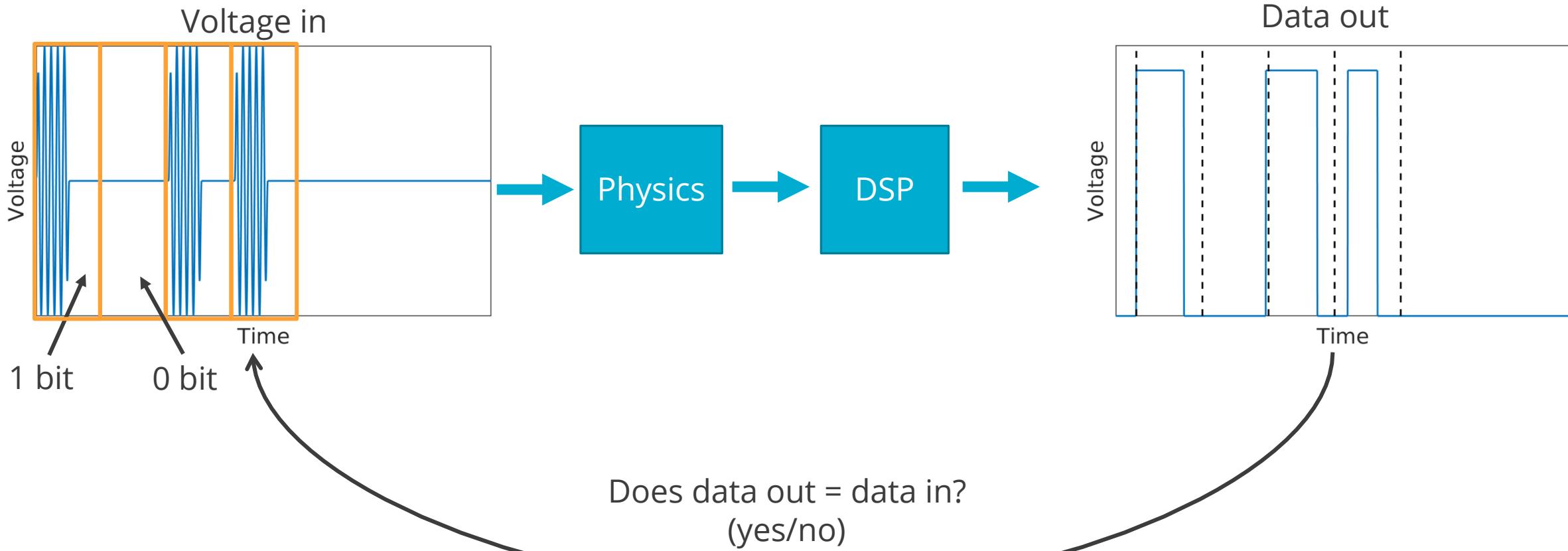
SVMs and Adaptive SVMs

- Support Vector Machines (SVMs) seek the hypersurface that maximizes separation of pre-classified samples (supervised)
- In simplest case, data is linearly separable
- When data is not linearly separable, we can map the data to a space where it is linearly separable

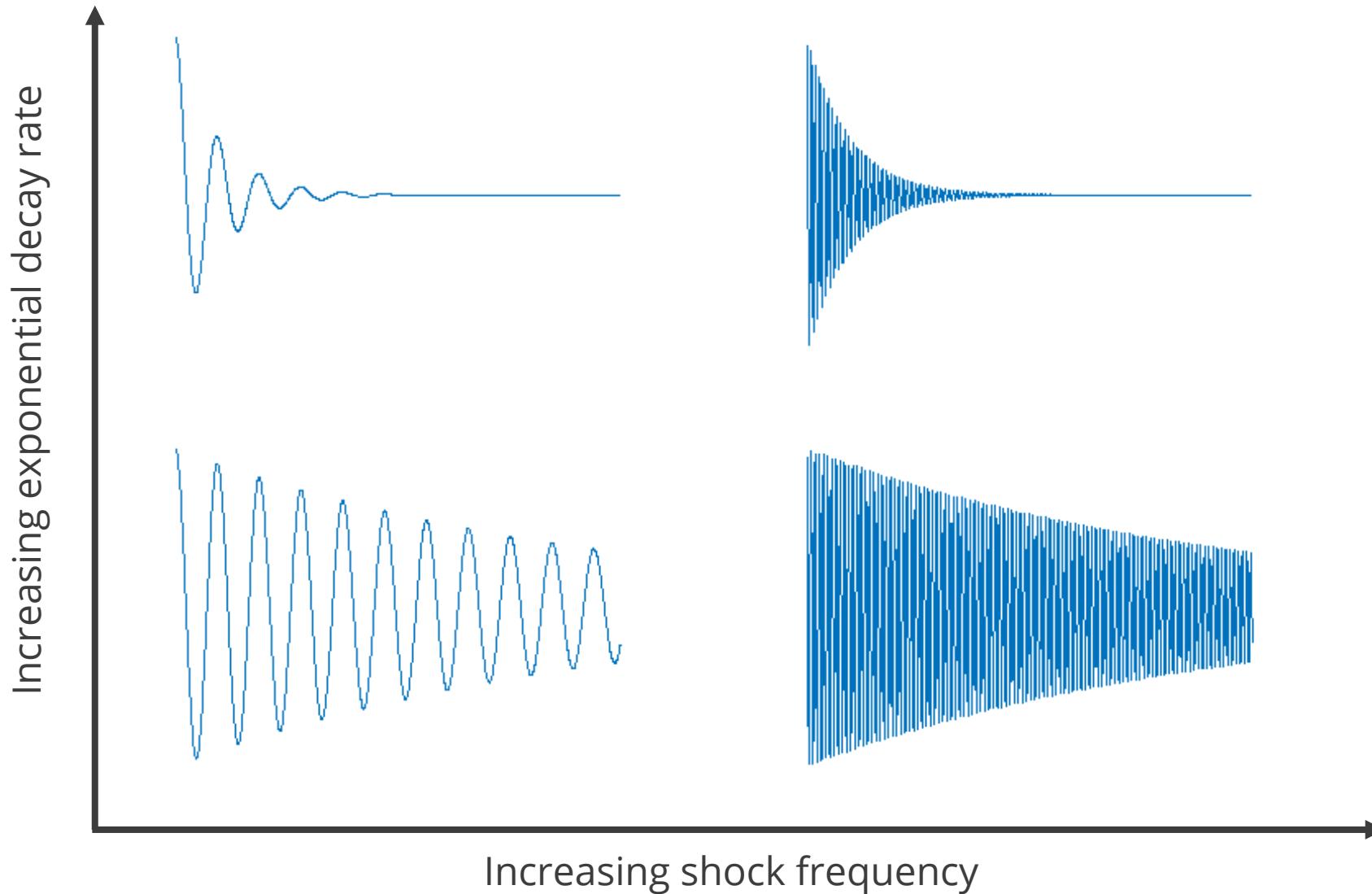


- SVMs provide a closed-form expression for the hypersurface, a convex optimization problem for training, resiliency to the curse of dimensionality, and straightforward extensions to adaptive strategies

Problem Workflow

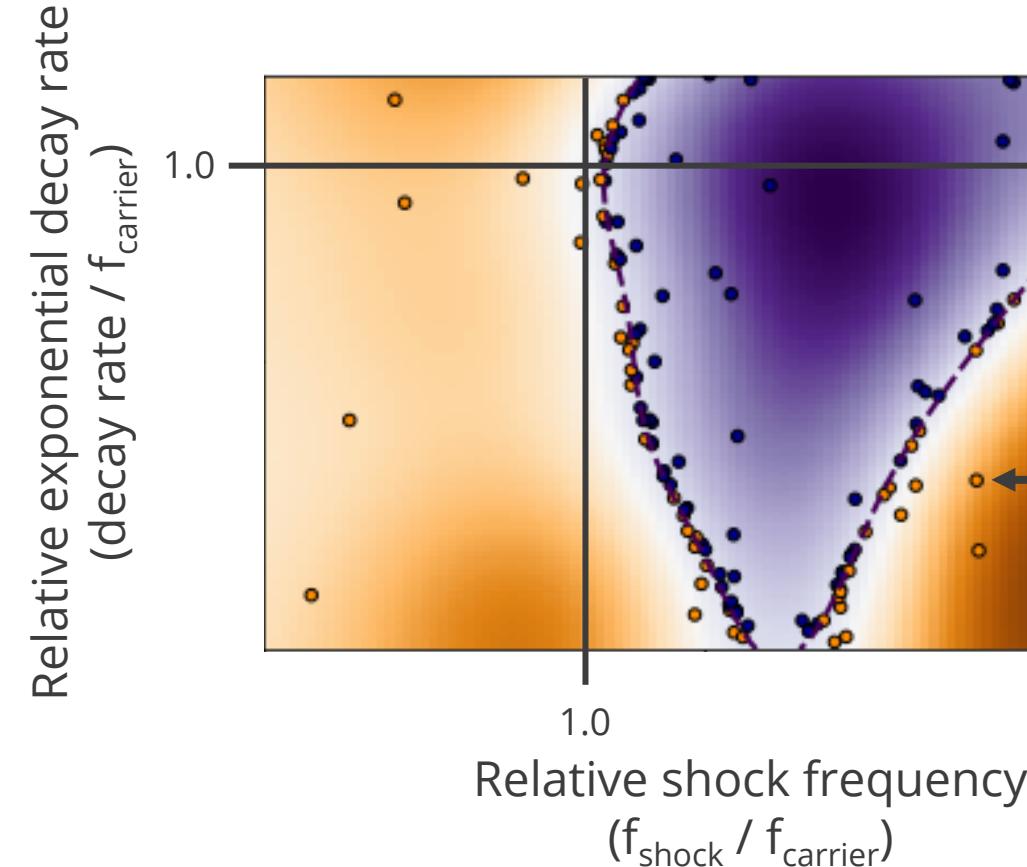


6 | Input parameters



In addition, explored several different levels of shock amplitude

Low shock amplitude



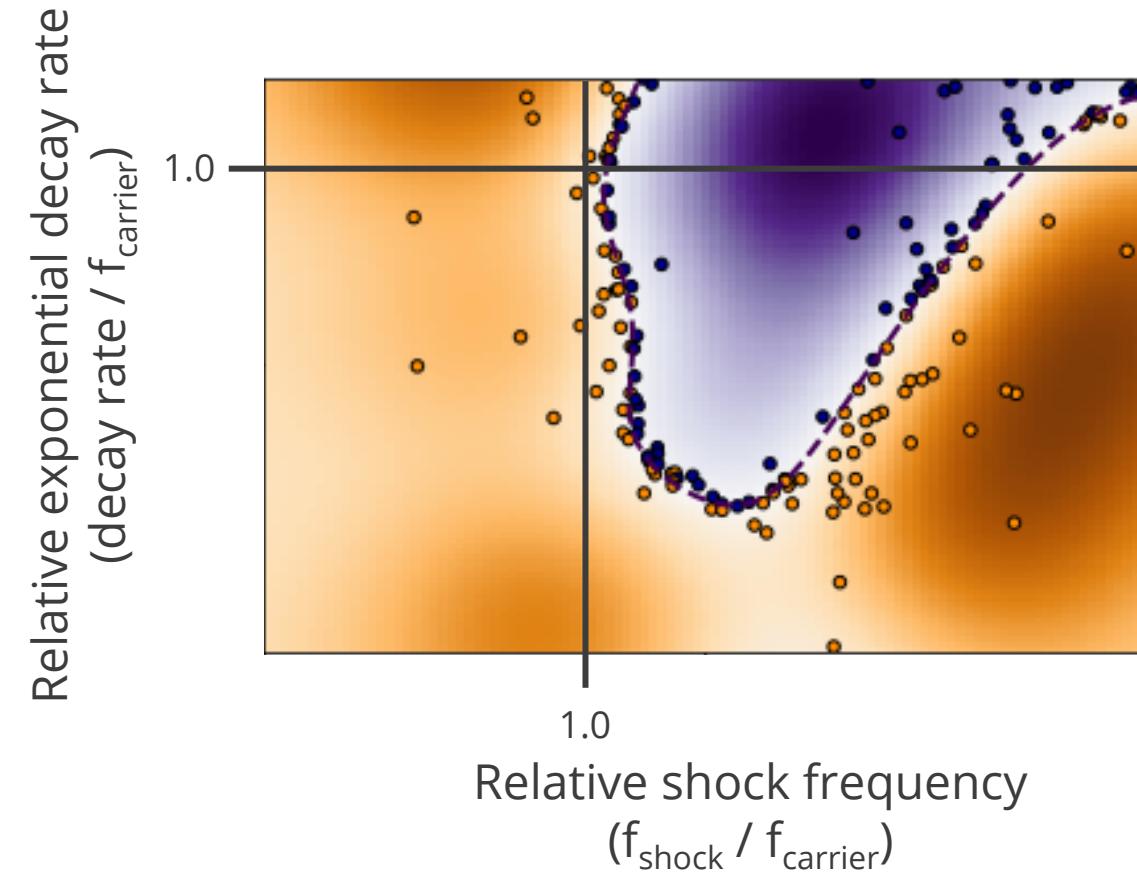
Blue = no data loss

Orange = data loss

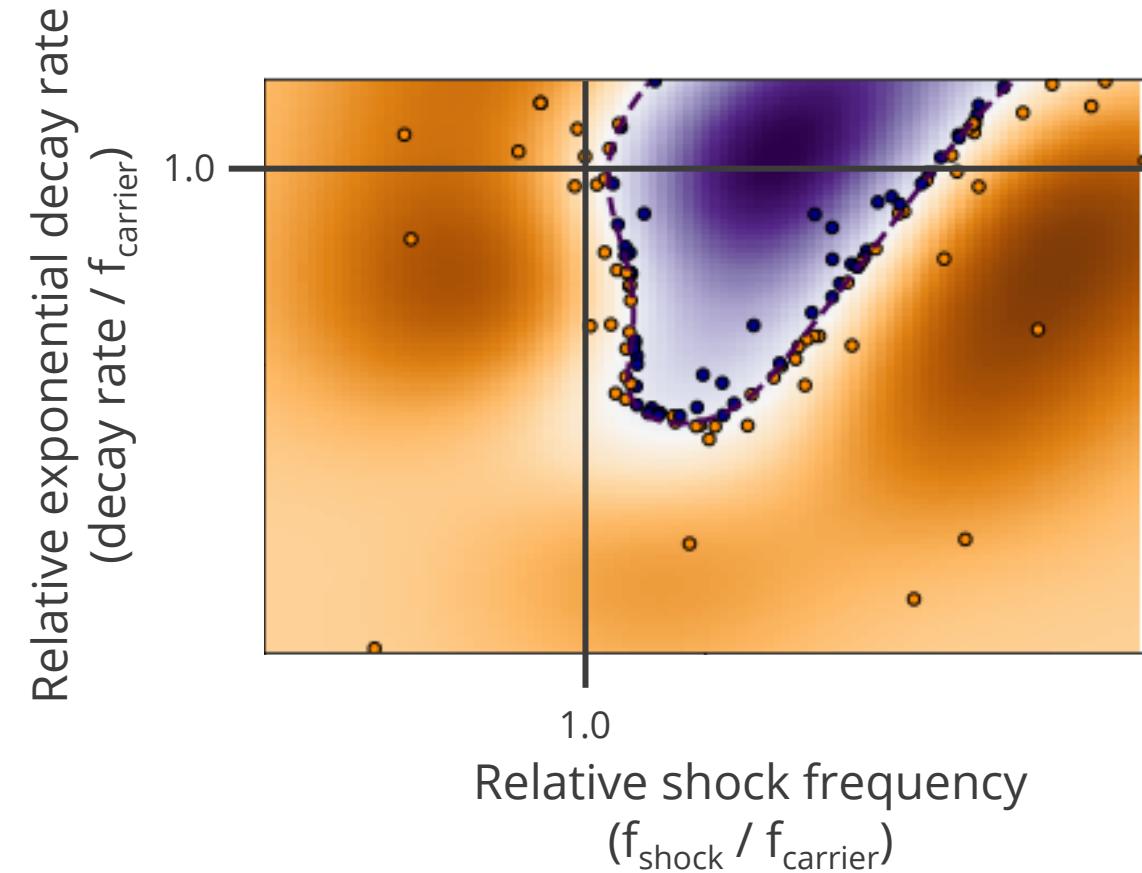
Hypersurface
separates the two

Boundary is estimated
from a small,
adaptively-determined
training set

Medium shock amplitude



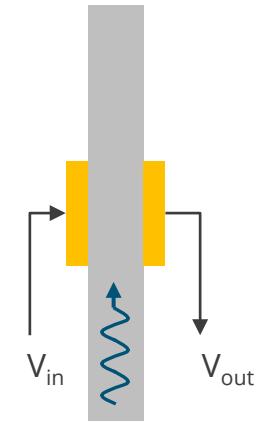
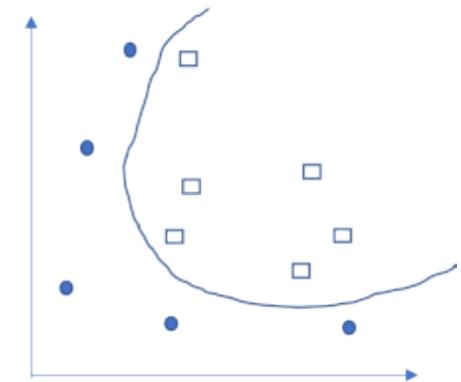
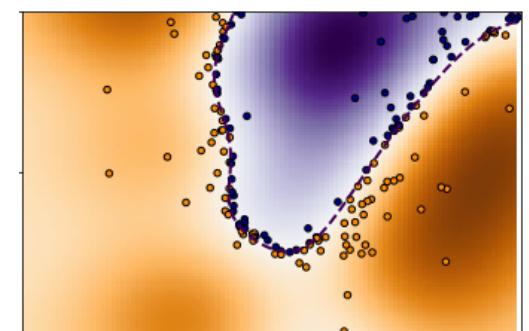
Large shock amplitude



Blue = no data loss
Orange = data loss

Summary

- Cross-barrier communication can maintain integrity of a protective barrier
 - Exposes the communication channel to new sources of disruption
- We formulated this disruption risk as a classification problem
 - Used adaptive SVMs to explore the space
- SVMs identified sets of shock parameters that lead to data disruption
 - Points towards regions that need to be protected against or designed around

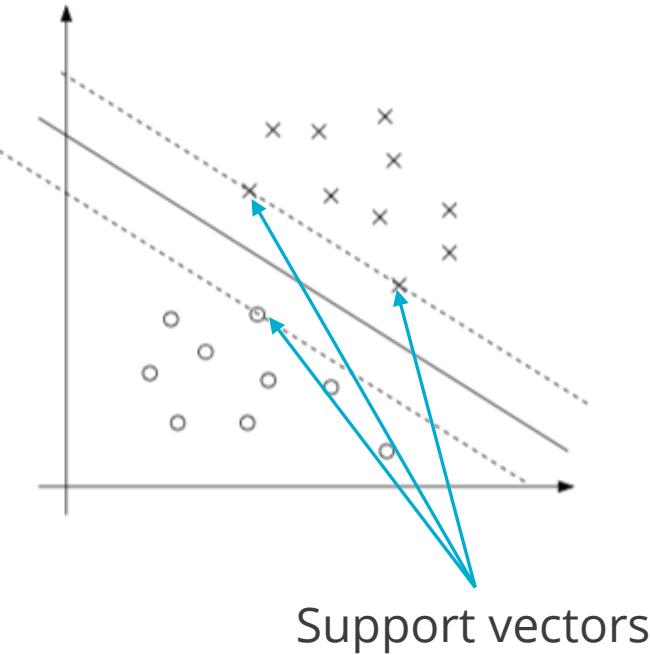


Backups

Quick Overview of SVMs

12

Credit: W. Aquino



- The SVM training problem in primal form

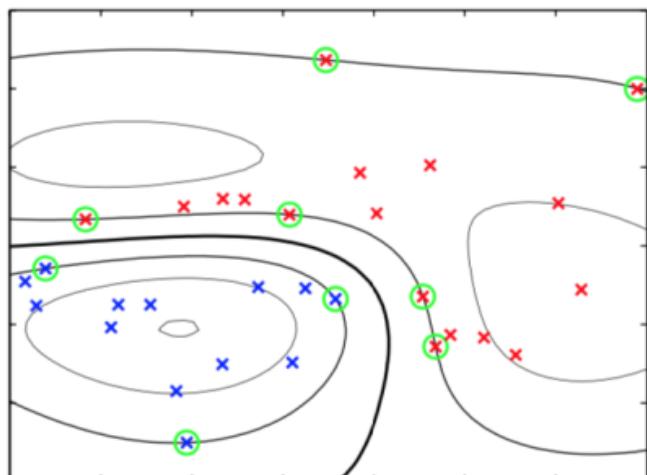
$$\begin{aligned} & \underset{\mathbf{w}, w_0}{\text{minimize}} \quad \frac{1}{2} \|\mathbf{w}\|^2 \\ \text{s.t.} \quad & y_i (\mathbf{w}^T \mathbf{x}_i + w_0) \geq 1 \quad i = 1, \dots, m \end{aligned}$$

- General Formulation with Basis Functions

$$\begin{aligned} & \underset{\mathbf{w}, w_0}{\text{minimize}} \quad \frac{1}{2} \|\mathbf{w}\|^2 \\ \text{s.t.} \quad & y_i (\mathbf{w}^T \phi(\mathbf{x}_i) + w_0) \geq 1 \quad i = 1, \dots, m \end{aligned}$$

- Kernels:

$$K(\mathbf{x}, \mathbf{x}') := \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$$



Decision contours
using Gaussian
Kernel

Classification vs Regression

Credit: W. Aquino

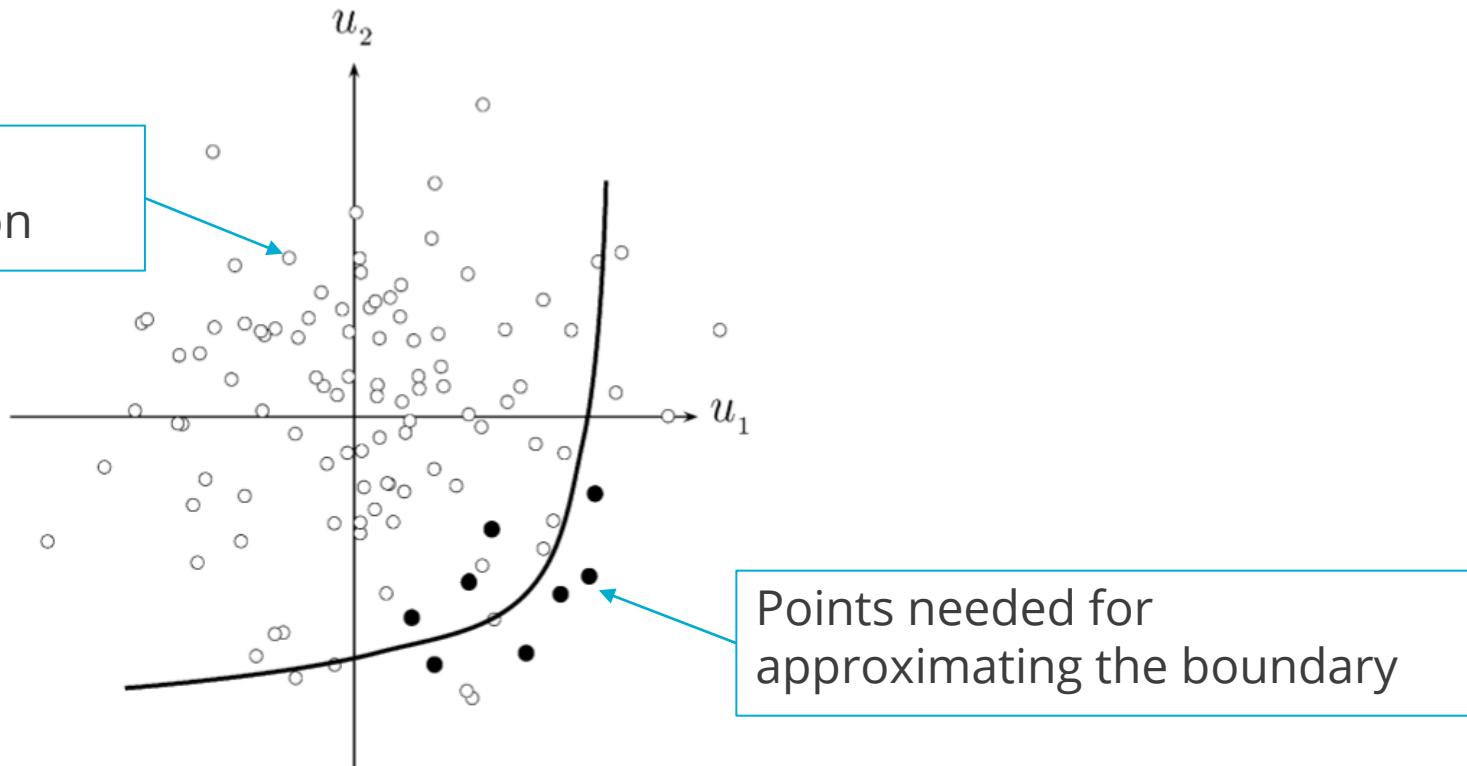
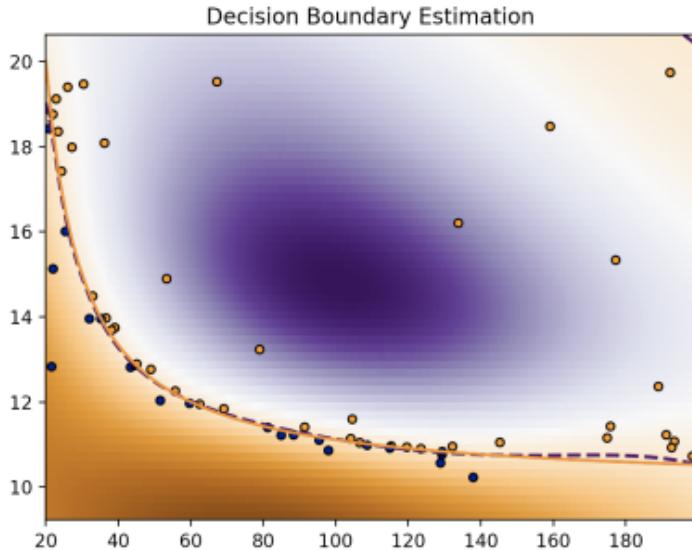


Fig. 6. The sampling for approximating the limit state function (black circles) differs from that aimed at approximating the performance function (white circles).

Credit: J.E. Hurtado, doi: 10.1016/j.strusafe.2003.05.002

Algorithm For Decision Boundary Detection

Credit: W. Aquino



- Form the background set X_b by drawing M background samples $x_j \in X$ using a uniform distribution.
- Add the first n samples in X_b to the training set X_{tr} and remove from X_b .
- Evaluate the training samples using the physics model as $g(x_j), x_j \in X_{tr}$. If there is at least one sample in each of \mathcal{D}^+ and \mathcal{D}^- continue.
- Otherwise, continue drawing samples from X_b and adding to the training set without replacement until there is at least one positive and one negative sample.
- While not converged and background samples are available,
 1. Train a SVM using the current training set.
 2. Evaluate the decision function, $f(x)$, from the current SVM on the background set.
 3. Find the two points that are closest to the boundary on the + and - sides and denote as x_k^+, x_k^- .
 4. Evaluate the latter two points using the physics-based function as $g(x_k^+)$ and $g(x_k^-)$.
 5. Add these points to the training set and remove from the background set.
 6. Compute convergence metric.