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Lightweight Distributed Metric Service (LDMS)

/'/ At Sandia, we use LDMS to collect system and application data
o LDMS can collect 1000s of system metrics at sub-second intervals, typically collect at 1 Hz

o These metrics range from network performance counters to filesystem statistics to CPU and memory
utilization

o Currently collecting ~10s of TB of data each day to custom database Distributed Scalable Object Store (DSOS)

An LDMS sampler daemon on each compute node collects information and sends it synchronously to
an LDMS aggregation daemon, typically on an admin node
o Aggregator daemons can chain as many times as desired

o Last daemon in chain is typically on a node where the data can be stored

Compute Nodes Aggregator Node(s) Storage Node(s)




P / AppSysFusion: Integrating Application and System Data for

Execution Time Diagnosis of Performance Variation %,
App&iSys

The AppSysFusion project combines kernel timing data and system metrics in an analysis and visualization
framework to enable real-time insights

o Kokkos used to sample application and timing data without recompilation

o LDMS used to sample whole-system data and transport all collected data to separate cluster for storage and
analysis
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Deployed on several HPC systems at SNL and collaborating with multiple code teams
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P/ Runtime Analysis and Visualization of System and Applications
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P University Research Collaborations

SNL has partnered with six universities over the past five years to explore research topics for HPC
monitoring and analysis

University collaborations allow us to explore and trial new techniques with top researchers in their field

Brief list of university topics:

o Boston University — Machine Learning Modelling of HPC Anomalies

o New Mexico State University — GPU Resource Monitoring and Application Instrumentation
o University of Central Florida — HPC Resource Allocation and Metric Collection Research

o University of New Mexico — Time-series Analysis using Dynamic Time Warping

o University of Northeastern — Network and DARSHAN I/O Characterization and Clustering
o University of Urbana Champaign — Network Contention / Modelling Analysis

SNL has been researching monitoring and analysis techniques for HPC centers since 2003

List of most publications can be found at https://github.com/ovis-hpc/ovis-publications/wiki
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/7 Enabling Application Data Injection vi

LDMS - low-overhead (<1% application) data collection,
transport, and storage capability designed for continuous
monitoring supporting run time analytics and feedback.

* System data collection is typically synchronous at regular
(e.g., second or less) intervals

e Structured data format (i.e., metric set) designed to
minimize data movement

* Transport is typically pull based to minimize CPU
interference

* Transport to multiple arbitrary consumers over both RDMA
and socket

LDMS Streams — on demand publication of loosely formatted
information to subscribers

* Transport is push based and supports asynchronous event
data (e.g. scheduler and log data)

* Unstructured data

a LDMS

ldmsd L1 aggregator pulls

from memory regions

/ “Xf LO samplers

<«— Sampler plugins

ldmsd

T

Daemon publish API called from externally or by a plugin
pushes to l[dmsd which pushes to all subscribing plugins

and aggregators




/" Kokkos to LDMS publish

A

Application Code Kokkos Runtime Code
Kokkos::parallel_for( ..., call kokkosp_begin_parallel_for(..)
KOKKOS_LAMBDA(int i) {
<loop body> <execute loop body>
3;

call kokkosp_end_parallel_for(..)

Kokkos Sampler controls the sampling rate. When
triggered, it signals for the Kokkos Connector to

publish data to LDMS. Kokkos-LDMS Connector
-Publishes to LDMS Streams API

The new sampler introduces the option to sample

data using a time-based, count-based, or
constant push.

Kokkos
“Sampler”

-Keeps statistics and
timing
LDMS_stream_publish

#timestamp,job_id,rank,name,type,current_kernel_count,total_kernel_cou
nt,level,current_kernel_time,total_kernel_time
1627835612.086679,10195735,1,Kokkos::View::initialization [diagnostic:Solver
Field:B_Field:temp],0,1218,57972687,0,0.000005,182.693422
1627835613.709526,10195735,1, TimeAverage::Continuous,0,24758,57972788,
0,0.000006,182.693428
1627835616.787472,10195735,1,MigrateParticles::count,1,3540,57972889,0,0.
000001,182.693430

1627835620.448333,10195735,1,SolverInterface::Apply Trivial
BC,0,7512,57972990,0,0.000002,182.693432




/" DSOS: Enabling Scalable Ingest and Queries for Analysis and Viz
4

Analysis Cluster

Distributed Scalable Object Store (DSOS) is a scalable database with
a variety of features which enable simultaneous large-scale data
ingest and queries
o Designed specifically for large-scale HPC monitoring data ingest and
guery with flexibility to change and adapt as needs arise

o Coordinates databases across multiple devices and nodes to present a
“single, unified” database to the end user

o High insert rate for continuous data collection

o Indices can be created or removed as needed for optimizing queries
without reloading data

o Python, C, and C++ APl and command line interface




