
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SNL HPC Monitoring and
Analysis with AppSysFusion

Ben Schwaller – HPC Development

Supercomputing 2022 BoF

Operational Data Analytics – Drowning in Data

SAND2022-16200CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Holistic HPC Monitoring and Analysis Architectural Overview

2

Lightweight Distributed Metric Service (LDMS)

3

LDMS
sampler
daemon

LDMS
aggregator

daemon

LDMS
aggregator

daemon

Database / file

Compute Nodes Aggregator Node(s) Storage Node(s)

At Sandia, we use LDMS to collect system and application data
o LDMS can collect 1000s of system metrics at sub-second intervals, typically collect at 1 Hz
o These metrics range from network performance counters to filesystem statistics to CPU and memory

utilization
o Currently collecting ~10s of TB of data each day to custom database Distributed Scalable Object Store (DSOS)

An LDMS sampler daemon on each compute node collects information and sends it synchronously to
an LDMS aggregation daemon, typically on an admin node
o Aggregator daemons can chain as many times as desired
o Last daemon in chain is typically on a node where the data can be stored

AppSysFusion: Integrating Application and System Data for
Execution Time Diagnosis of Performance Variation

The AppSysFusion project combines kernel timing data and system metrics in an analysis and visualization
framework to enable real-time insights
o Kokkos used to sample application and timing data without recompilation
o LDMS used to sample whole-system data and transport all collected data to separate cluster for storage and

analysis

Deployed on several HPC systems at SNL and collaborating with multiple code teams

4
Dashboard of EMPIRE run with and without degraded performance caused by significant I/O contention

Performance variation due to I/O wait cycles

Normal run Degraded run

Kernel throughput is observably more erratic for degraded run

Runtime Analysis and Visualization of System and Applications

User queries from Grafana dashboards are
sent through a backend python application
which can call python analyses to derive
metrics from raw data
o In-query analyses save significant computation

time/resources for creating analysis results
o Only data of interest is analyzed and new analyses

can be created without recreation of analysis results
across the database

o Analyses can easily be changed / added to meet
new challenges and decrease

Python modules can query the database and
return pandas DataFrames for analysis

5

University Research Collaborations

SNL has partnered with six universities over the past five years to explore research topics for HPC
monitoring and analysis

University collaborations allow us to explore and trial new techniques with top researchers in their field

Brief list of university topics:
o Boston University – Machine Learning Modelling of HPC Anomalies
oNew Mexico State University – GPU Resource Monitoring and Application Instrumentation
oUniversity of Central Florida – HPC Resource Allocation and Metric Collection Research
oUniversity of New Mexico – Time-series Analysis using Dynamic Time Warping
oUniversity of Northeastern – Network and DARSHAN I/O Characterization and Clustering
oUniversity of Urbana Champaign – Network Contention / Modelling Analysis

SNL has been researching monitoring and analysis techniques for HPC centers since 2003

List of most publications can be found at https://github.com/ovis-hpc/ovis-publications/wiki

6

Questions?

Backup Slides

Enabling Application Data Injection via LDMS

9

LDMS - low-overhead (<1% application) data collection,
transport, and storage capability designed for continuous
monitoring supporting run time analytics and feedback.

• System data collection is typically synchronous at regular
(e.g., second or less) intervals

• Structured data format (i.e., metric set) designed to
minimize data movement

• Transport is typically pull based to minimize CPU
interference

• Transport to multiple arbitrary consumers over both RDMA
and socket

LDMS Streams – on demand publication of loosely formatted
information to subscribers

• Transport is push based and supports asynchronous event
data (e.g. scheduler and log data)

• Unstructured data

ldmsd L1 aggregator pulls
from memory regions
of L0 samplers

Sampler plugins

Daemon publish API called from externally or by a plugin
pushes to ldmsd which pushes to all subscribing plugins
and aggregators

ldmsd

Kokkos to LDMS publish

10

Kokkos-LDMS Connector
-Publishes to LDMS Streams API

…

Kokkos::parallel_for(… ,
KOKKOS_LAMBDA(int i) {
<loop body>
});

…

…

call kokkosp_begin_parallel_for(..)

<execute loop body>

call kokkosp_end_parallel_for(..)
..

Application Code Kokkos Runtime Code

Kokkos
“Sampler”

-Keeps statistics and
timing

LDMS_stream_publish

Kokkos Sampler controls the sampling rate. When
triggered, it signals for the Kokkos Connector to
publish data to LDMS.

The new sampler introduces the option to sample
data using a time-based, count-based, or
constant push.

LDMS Transport

#timestamp,job_id,rank,name,type,current_kernel_count,total_kernel_cou
nt,level,current_kernel_time,total_kernel_time
1627835612.086679,10195735,1,Kokkos::View::initialization [diagnostic:Solver
Field:B_Field:temp],0,1218,57972687,0,0.000005,182.693422
1627835613.709526,10195735,1,TimeAverage::Continuous,0,24758,57972788,
0,0.000006,182.693428
1627835616.787472,10195735,1,MigrateParticles::count,1,3540,57972889,0,0.
000001,182.693430
1627835620.448333,10195735,1,SolverInterface::Apply Trivial
BC,0,7512,57972990,0,0.000002,182.693432

DSOS: Enabling Scalable Ingest and Queries for Analysis and Viz

Distributed Scalable Object Store (DSOS) is a scalable database with
a variety of features which enable simultaneous large-scale data
ingest and queries
oDesigned specifically for large-scale HPC monitoring data ingest and

query with flexibility to change and adapt as needs arise
o Coordinates databases across multiple devices and nodes to present a

“single, unified” database to the end user
oHigh insert rate for continuous data collection
o Indices can be created or removed as needed for optimizing queries

without reloading data
o Python, C, and C++ API and command line interface

11

ldmsd

SOS

ldmsd

SOS

ldmsd

SOS

ldmsd

SOS
DSOS

…
Analysis Cluster

