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Overarching goal: Develop a complete and consistent atomic 
model for constitutive and observable data

1) Start with existing average-atom model 
based on density functional theory: DFT-AA

2) Use ab-initio multi-center DFT calculations 
to constrain DFT-AA model choices

3) Extend DFT-AA for dynamic properties (XRTS 
& line shapes) 

4) Extend DFT-AA for multiconfiguration 
electronic structure (opacities)

5) Extend DFT- AA to non-equilibrium plasmas Rigorously validate against experimental data 
and reference models for XRTS, transport, 

EOS, non-LTE, and line shapes



Overarching goal: Develop a complete and consistent atomic 
model for constitutive and observable data

1) Start with existing average-atom model 
based on density functional theory: DFT-AA
 self-consistent electronic and ionic 
structure, EOS, static transport coeff.

2) Use ab-initio multi-center DFT calculations 
to constrain choices 
 boundary conditions, Z*

Example: Solid iron at T = 1eV:
electronic density of states (top)
and radial distribution functions 



Overarching goal: Develop a complete and consistent atomic 
model for constitutive and observable data

[1] Baczewski et al PRL 116, 115004 (2016); [2] Milchberg et al PRL 61 2364 (1988) ; [3] Sperling et al PRL 115, 115001 (2015) 

1) Start with existing average-atom model 
based on density functional theory

2) Use ab-initio multi-center DFT 
to constrain DFT-AA model choices

3) Extend DFT-AA for dynamic 
properties (XRTS & line shapes) 

4) Extend DFT-AA for multiconfiguration 
electronic structure (opacities)

5) Extend DFT- AA to non-equilibrium plasmas
We will show that strong collisions and inelastic collisions 

improve DFT-AA agreement with TDDFT [1], 
static conductivities [2],  and XRTS experiments [3]



The dynamic collision frequency
modifies response functions and observables

[2]
[1]

Al X-ray 
Thomson 

Scattering 
(XRTS)



Milchberg et al.

Example: Solid Al at T = 1eV



Modifying the ion-ion structure factor doesn’t help much

Milchberg et al.

Starrett & Saumon, HEDP 10, 35 (2014); cf  Wetta and Pain, Phys Rev E 102, 053209 (2022) 



Including dynamic screening via Lenard-Balescu 
integration [1,2] also has only a modest effect

[1] Redmer, Physics Reports 282, 35 (1997)      [2] Faussurier & Blancard, Physics of Plasmas 23, 012703 (2016) 



[1] Faussurier & Blancard, Physics of Plasmas 23, 012703 (2016) 

  m   m’



The T-matrix cross sections use phase 
shifts from the self-consistent 

continuum orbitals



[1] Reinholz et al, Phys Rev E 62, 5648 (2000)     [2] Witte et al., Physics of Plasmas 25, 056901 (2018)



A trial estimate of inelastic processes brings our DFT-AA 
calculations into good agreement with reference data 

Inelastic collisions include Pauli 
blocking and represent the relaxation 

time associated with a given 
excitation from equilibrium

Papers in preparation: Baczewski et al, Hentschel et al



Our dynamic collision frequencies also improve 
DFT-AA stopping powers

Modifications to the dielectric 
function impact charged-particle 

stopping powers.

Papers in preparation: Kononov at al, Hentschel et al



Overarching goal: Develop a complete and consistent atomic 
model for constitutive and observable data

1) Start with existing average-atom model 
based on density functional theory: DFT-AA

2) Use ab-initio multi-center DFT calculations 
to constrain DFT-AA model choices

3) Extend DFT-AA for dynamic 
properties (XRTS & line shapes) 

4) Extend DFT-AA for multiconfiguration 
electronic structure (opacities)

5) Extend DFT- AA to non-equilibrium plasmas
We have shown how DFT-AA can provide reasonable 

estimates for ion-Stark broadening 
(see K. Adler’s presentation)

With T. Gomez and C Iglesias, we are exploring whether 
dynamic collision frequencies with inelastic collisions can 

provide electron broadening terms

Example: Heb of 
0.2 g/cc Al at 250 eV



Overarching goal: Develop a complete and consistent atomic 
model for constitutive and observable data

1) Start with existing average-atom model 
based on density functional theory: DFT-AA

2) Use ab-initio multi-center DFT calculations 
to constrain DFT-AA model choices

3) Extend DFT-AA for dynamic 
properties (XRTS & line shapes) 

4) Extend DFT-AA for multiconfiguration 
electronic structure (opacities)

5) Extend DFT- AA to non-equilibrium plasmas

Good line shapes are only useful when combined with 
detailed multiconfiguration electronic structure and spectra

Example: 0.2 g/cc Fe at 180 eV

cf  Bailey et al, Nature (2015) 



We have developed an efficient approach to generate 
multiconfiguration atomic structure 

This approach generates very reasonable electronic 
structure and spectra without re-optimizing orbitals for 

every configuration

• Using DFT-AA electronic nℓ orbitals 
as a basis set, we compute Slater 
coefficients to generate real 
(integer-occupied) electronic 
configurations [1]

• Re-optimize all DFT-AA n’ℓ’ 
orbitals under small changes in 
occupations in all nℓ orbitals 
 new Slater coefficients

• Taylor-expand Slater coefficients 
on occupations to capture orbital 
relaxation

• Add spin-orbit effects to split nℓ 
transitions into nℓj

[1] Faussurier and Blancard, Phys Rev E 97, 023206 (2018); Paper in preparation: Hansen et al



Overarching goal: Develop a complete and consistent atomic 
model for constitutive and observable data

1) Start with existing average-atom model 
based on density functional theory: DFT-AA

2) Use ab-initio multi-center DFT calculations 
to constrain DFT-AA model choices

3) Extend DFT-AA for dynamic 
properties (XRTS & line shapes) 

4) Extend DFT-AA for multiconfiguration 
electronic structure (opacities)

5) Extend DFT- AA to non-equilibrium plasmas
Tr << Te

Non-LTE effects have profound impacts on charge state 
distributions, radiative losses, and emission and absorption 

spectra, especially for high Z and low densities

Example: 0.01 g/cc Kr



We have developed a simple modification to Fermi-Dirac  
occupation factors for a reasonable non-LTE Z*

This simple modification gives a first approximation for Z* 
that is good enough to provide self-consistent orbitals 

suitable for full non-LTE collisional-radiative calculations

cf Faussurier et al, Physics of Plasmas 21, 112707 (2014); Paper in preparation: Hansen et al

Standard DFT-AA occupations:
Xnℓ = 2(2ℓ+1) / [1 + e(Enℓ – m)/T]

New DFT-AA occupations use collisional and 
photoionization (and recombination) rates 
Rnℓ  cntm  that modify the occupations:
Xnℓ = 2(2ℓ+1) / [1 + (Rci + Rpi) / (Rcr + Rrr + Rdr) ]

Recovers LTE 
Provides reasonable non-LTE Z*
Dielectronic recombination is tricky



Conclusion: Extensions of the DFT-AA model can produce 
reliable constitutive & observable properties

• Dynamic collision frequencies extend DFT-AA model predictions to include average plasma response 
as well as averaged ionic & electronic structure
 Conductivities
 X-ray Thomson Scattering (Hentschel, Baczewski)
 Stopping powers (Kononov, Hentschel)

• We can split the DFT-AA electronic structure into real configurations and incorporate non-LTE effects
 Detailed spectra from self-consistent orbital basis set
 Self-consistent ion-Stark line shapes (Adler, Gomez)

All quantities come from a single, internally self-consistent DFT-AA model that 
agrees with available DFT-MD, TDDFT, CR, & line shape models

Rest well, 
Frankenmodels!

Homer’s 
magical 
animal


