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We address the problem of convergence of sequential
variational inference filter using a robust variational objective
and 1 norm-based correction for a linear Gaussian system.




353 For very high dimensional problems such as:
or " Big data, ML problems
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Intractable: Matrix storage and computation

. j Available solutions:

_.h " Reduced rank Kalman Filter
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. , Our solution :

- E@ y W Variational formulation aided by the H  filter
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Linear system with additive Gaussian noise

Yy, = x, 0, +n,
2 = A,0; +w
" Jndex:t

" Qutput: Y € R™

" Tnput:ax; € R"”

" <<n

= [.I.D. zero mean Gaussian noises : 7}, Wy
" Noise covariance matrices : (), i}

= Prior on theta: § ~ N (0, Xy, )

Optimal update: Kalman filter (KI)

o
7 Model and Kalman Filter

KF .
Intractable: P2, storage and computation

Solution: Estimate a diagonal matrix using
Variational Inference

D, such that P;" < P, < P;_

Issue :

*Theorem 1

Solution :

Introduce cross-correlation information
using concepts from the Hocfilter, bringing
robustness

Variational Inference el ‘
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Variational Inference

N

/ Poslterior Prior Likelihood
.;4; D’H) RlOO..”
|
- PPy = Jo P(0)p(DI0)d0 /
)

At even moderately high dimensions of fthe
amount numerical operations explode.

dv distribution

q(0)

Variational Distribution

p(0|D)

Complicated

Easy Distributions

Q*(0)




Variational Inference Filter

Optimal Pyp ;@ solved analytically with a
diagonal VI covariance matrix

(9 | ¢) ( P<d)) *Theorem 4
where d is the diagonal.

Posterior pdf: P (9)

Variational pdf: %(9) Issue: convergence problem for large dimension
Reason: cannot capture correlation with a

Traditionally, solved using ELBO diagonal matrix. Since this is not based on a real

formulation. (ELBO-VI) distance metric, there is no cancellation to hide
uncertainty

But, here we prefer solving for
Dk1(p(0)]qs(08)) which is the Expected
Propagation formulation. (EP-VI)

Plot showing the scaled
estimation error
response of the EP-VI
filter with a dimension

n=>50.

=1 =] b} & = a8

ELBO-VI underestimates uncertainty. i e

General family of f-divergence -ty ‘
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.7 Filter

6 ® 90% conf, PKF

L" Information pseudometric: o %0% conf. P, .,
p (9) r 1/7” 4l @& 90% conf, PUI-ELB{)
]LT' — (/p 9 ’10g— d9> : r 2 1 ® 90% conf, P 2
(6) q(0) .
IL" Filter Update Step:
argmin/p(@)‘ log _p) 40 = d* — P,(d") B
di q(0|d) 2

Comparing the 90% confidence level of true posterior (in

black), traditional VI update based on KL divergence with ®

EP (in red) and with the ELBO (in blue). The pseudometric ' ' ' x
optimum avoids suppressing probability in domains that

have significant posterior density.

Better, but cross-correlation is still not captured.

Motivation from 44 oc ﬁlter—z

*Duersch, Jed A., and Thomas A. Catanach. "Generalizing information to the evolution of rational belief." Ensropy 22.1 (2020): 108
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7 Hee Filter and augmentation with VI

Goal of H filter is to estimate @; such that, (xt,ly 2
N—1 N . ) N kFy__,| Variational
Z | |9t . et ‘ ‘28 (ﬂ.o, PU) (Ht’“Pt) Kalman Update (ﬂt+1, Pt+1) Approximat.lon
t
t=0
J = l
A 5 N—-1 9 9 (He+1 Pc‘ﬁfl)
100 = B0l + 3 (1wl s + 1l 13-+ ) \
0 =0
Heo . Optimize
can be made less than 1/y. (a1, PH2) < e ey

The estimation steps are:

Pt — pt[I — "yStPt + th_1$$pt]_1 )
0 Three steps: First, the Kalman update to compute

K= Pz R the true update. Then Variational Inference is

0 p = 0 i+ Ki(y, — mf@ ¢) used to find the best low memory approximation.

Finally, comparing the true update and variational

approximation a final update which is optimized

to robustly assimilate the next observation.

P, : ptior covariance

0, : estimates
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"~ Algorithm

/4 Algorithm 1 Algorithm of Augmented He Filter Up- Outline of the algorithms:

4 p %e:éa B::gonal oot o i 0 (1) 1. Calculate the posterior covariance using
C;“cu.late:gonal posterior matrix at step t the Kalman update.
K;= éAt“Pt’;’ng[M + Q)x; . 2. SOIVGOthC EP—VI. for the diagonal
0 x[ (Aw1PISAL + Q)x:+ R covariance matrix.
PAT= (1 # Kix[)(Aw PGF AL+ @ (1) 3.  Use the 1 feedback to minimize the
Optimization 1. (using Newton Conjugate Gradient)

norm between the Kalman gain and EP

p(<> |y) Erd<> P PtL' (d)

(12)

d-" = argmin  p(0 | y:)-log
d,

t q(0 | db) -VI Kalman gain.

Propagate P} (d): Py = (An 1P AlL1 + Q) : :
Note: The outcome is a low-rank covariance
Compute the Kalman update for the next step using

PLF: matrix, that can robustly represent the
KKF = éAtP,KFA,T + Q)Xt+ 1
;
0 xl,{(APKFAT + Q)xt41+ R (13)

uncertainty in the estimates, without leading

to divergence with growing problem size.
Compute the expression for K {1 :
K% =P5Lll # “PS+ xiR*'x[ P51
0 x;R*1 (14)

Optimization 2: (Sequential Least Squares Program-
ming)

“«l — . H KF
£ = argmin [IK 5 # K £F1l2

P{le = P (Al # “{P} (d) + x:R* 'x[ P{ (d)]*"
(15)
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7 Result -1

MSE Estimate

—— EP-VI

101
Dimension

—+— EP-VIH.,

£2-Vi

—— [%-VIH,

Mean Square Error for the five different filtering
algorithms with varying problem dimensions after
1000 sequentially observed data points. The error
bars correspond to 93% confidence intervals. Two
main observations are that 1) the .2 formulation of
the VI problem outperforms standard EP VI and 2)
the two Hoo filters under-perform, but as we will see
are not overconfident so are more trustworthy. A
small perturbation exists on the different filter's
dimension coordinates to improve readability.
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7 Result - 11

105_
104_

103_

Worst Scaled Error Estimate
=
S,

—+— EP-VI

10!
Dimension

—+— EP-VI H.,

102

—— 12-VI

—— [2-V| Hy

Worst Case Scaled Error (e.g. the largest absolute
error divided by estimated standard deviation) for
the five filters. The error bars are 93% confidence
intervals. We see that 1) the variational filters
without added robustness can be significantly
overconfident and 2) the two Ho filters, particularly
the L2-Hoo better capture the worst-case estimate
uncertainty. These methods trade robustness and
lower bias for slower convergence. A small
perturbation exists on the different filter's dimension
coordinates to improve readability.
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" The standard KF becomes exceedingly memory intensive as the
dimension of the underlying state space increases.

" We propose a reduced memory filter based upon variational
inference with an information pseudometric and Hoo filter to resolve
the storage and computational issue related to the error covariance
matrix while retaining robustness.

" QOur filters, specifically the [.2-Hoo exhibits slower learning, but
enable information update along all the directions of the state space,
keeping the worst-case performance better than other filters.

" We are looking forward to improving the performance of our
proposed algorithm
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