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We address the problem of convergence of sequential 
variational inference filter using a robust variational objective 
and         norm-based correction for a linear Gaussian system. 



Introduction
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For very high dimensional problems such as:
 Big data, ML problems
 Mapping tropical Pacific sea level
 Monitoring Water Quality
modeled as a linear Gaussian system, traditional 
Kalman filter is intractable.

Intractable: Matrix storage and computation

Available solutions:
 Reduced rank Kalman Filter
 Direct approximations

Our solution : 
Variational formulation aided by the        filter 



Model and Kalman Filter
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Linear system with additive Gaussian noise

 Index : 
 Output : 
 Input :
  
 I.I.D. zero mean Gaussian noises : 
 Noise covariance matrices : 
 Prior on theta : 

Optimal update: Kalman filter (KF) 

Intractable:           storage and computation

Solution: Estimate a diagonal matrix using 
Variational Inference

Issue : 

Solution :
Introduce cross-correlation information 
using concepts from the        filter, bringing 
robustness

Variational Inference

*Theorem 1



Variational Inference
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At even moderately high dimensions of   the 
amount numerical operations explode. 
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Variational Inference Filter
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Posterior pdf:
Variational pdf:

Traditionally, solved using ELBO 
formulation. (ELBO-VI)

But, here we prefer solving for
                               which is the Expected 
Propagation formulation. (EP-VI)

ELBO-VI underestimates uncertainty.

Optimal PEP-VI : solved  analytically with a 
diagonal VI covariance matrix 

where    is the diagonal.

Issue: convergence problem for large dimension
Reason: cannot capture correlation with a 
diagonal matrix. Since this is not based on a real 
distance metric, there is no cancellation to hide 
uncertainty

*Theorem 4

Plot showing the scaled 
estimation error 
response of the EP-VI 
filter with a dimension 
n=50.

General family of f-divergence



        Filter
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Motivation from          filter  

ᵔ� ᵅ�

         Information pseudometric*:

         Filter Update Step:

ᵔ� ᵅ�
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Comparing the 90% confidence level of true posterior (in 
black), traditional VI update based on KL divergence with 
EP (in red) and with the ELBO (in blue). The pseudometric 
optimum avoids suppressing probability in domains that 
have significant posterior density. 

Better, but cross-correlation is still not captured.

*Duersch, Jed A., and Thomas A. Catanach. "Generalizing information to the evolution of rational belief." Entropy 22.1 (2020): 108



       Filter and augmentation with VI
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Three steps: First, the Kalman update to compute 
the true update. Then Variational Inference is 
used to find the best low memory approximation. 
Finally, comparing the true update and variational 
approximation a final update which is optimized 
to robustly assimilate the next observation.



Algorithm
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Outline of the algorithms:
1. Calculate the posterior covariance using 

the Kalman update.
2. Solve the EP-VI for the diagonal 

covariance matrix.
3. Use the         feedback to minimize the 

norm between the Kalman gain and EP
-VI Kalman gain. 

Note: The outcome is a low-rank covariance 
matrix, that can robustly represent the 
uncertainty in the estimates, without leading 
to divergence with growing problem size. 



Result - I
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Mean Square Error for the five different filtering 
algorithms with varying problem dimensions after 
1000 sequentially observed data points. The error 
bars correspond to 93% confidence intervals. Two 
main observations are that 1) the L2 formulation of 
the VI problem outperforms standard EP VI and 2) 
the two H∞ filters under-perform, but as we will see 
are not overconfident so are more trustworthy. A 
small perturbation exists on the different filter's 
dimension coordinates to improve readability.



Result - II
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Worst Case Scaled Error (e.g. the largest absolute 
error divided by estimated standard deviation) for 
the five filters. The error bars are 93% confidence 
intervals. We see that 1) the variational filters 
without added robustness can be significantly 
overconfident and 2) the two H∞ filters, particularly 
the L2-H∞ better capture the worst-case estimate 
uncertainty. These methods trade robustness and 
lower bias for slower convergence. A small 
perturbation exists on the different filter's dimension 
coordinates to improve readability.



Takeaways

13

 The standard KF becomes exceedingly memory intensive as the 
dimension of the underlying state space increases. 

 We propose a reduced memory filter based upon variational 
inference with an information pseudometric and H∞ filter to resolve 
the storage and computational issue related to the error covariance 
matrix while retaining robustness.

 Our filters, specifically the L2-H∞ exhibits slower learning, but 
enable information update along all the directions of the state space, 
keeping the worst-case performance better than other filters. 

 We are looking forward to improving the performance of our 
proposed algorithm 
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Thank You 


