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Buckets and buckets of this stuff What can we do with 25 grams?
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Development of fine TATB powders with improved detonation-spreading
performance has been achieved by sonochemical amination and acid recrystal-
lization. We report the performance of these powders in two types of detonation-
spreading tests. The standard chosen for comparison was ultrafine TATB
(UF-TATB). An Arrhenius reaction rate model was found to do a good job
of simulating the detonation-spreading performance of UF-TATB in both tests,
at different temperatures and densities. Some of the new TATB powders were
better in detonation spreading than UF-TATB. The shock sensitivity of fine
TATB may not be linked solely to powder particle size and porosity.

INTRODUCTION

Insensitive high explosives (IHEs) such as triamino-
trinitrobenzene (TATB) and formulations based upon
TATB exhibit extended reaction zones.!# As a result
of this, the detonation of TATB exhibits a relatively
large detonation failure diameter and protracted corner
turning.25 This type of behavior also is manifested in
relatively slow lateral spreading of detonation from a
finite initiation source.

Our motivation in this work has been to develop a
pure fine TATB powder that has improved detonation-
spreading performance. This has been approached by
developing new, simpler methods that produce fine TATB
directly, including synthesis of TATB by sonochemical
amination and acid recrystallization of a sodium salt of
TATB. We evaluated the powders through their perfor-
mance in two types of detonation-spreading tests. The

Mushroom test utilizes a streak camera to measure the
breakout profile of the detonation frontin a hemispherical
sample driven by a detonating donor. A new detonation-
spreading spot-size test, herein named the Floret test, was
developed that requires only a small amount of sample
explosive, can be performed quickly, and involves no
dynamic instrumentation measurements. The standard
chosen for comparison was ultrafine TATB (UF-TATB),
which was developed by LLNL and Pantex.6 A new
Arrhenius reaction rate model was found to do a good
job of simulating the detonation-spreading performance
of UF-TATB in both types of tests, at different tem-
peratures and densities. The new TATB powders were
found to be better in detonation spreading than UF-
TATB, particularly at low density. More work remains
to be done in formulation of the fine TATB materials and
in determining whether a formulation can be certified as
an [HE.
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Still poor... but consistent Hey... you are improving. Nice!
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A bit of optimism:

It should be possible to design
a TATB formulation that turns

corners and somewhat retains
its other “desirable” properties
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