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Similitude
• Fracture mechanics has the power of similitude through the 

stress intensity factor, K

• Captures all of the mechanical driving force, allowing 
application of laboratory crack growth to engineered 
structures of different geometries for fatigue, fast fracture

• We do not have an equivalent in corrosion



Center for Electrochemical 
  Science and Engineering

Challenges to Corrosion Similitude in SCC
• Short-crack effect 

– Turnbull and Zhou
• Small SCC cracks grow >10x faster 

than long cracks

– Turnbull and Gangloff:
• small corrosion fatigue cracks in 4130 

(0.1–2 mm) grow up to 500 times 
faster than long cracks (15–40 mm)

• Natural exposures generally are 
thin electrolytes on the surface, 
adding more variables

Turnbull and Zhou (2011)
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Past Models of SCC Chemistry

Figure adapted from A. Turnbull. 
Corrosion. 57 (2001) 175–189 Figure adapted from M.P. Manahan, et 

al., Corros. Sci. 37 (1995) 189–208

• Current models assume crack tip current density and external potentials to determine 
electrochemical conditions in the crack
• Originally built for high temperature boiling water reactors
• Static boundary conditions
• Size of external cathode and WL not explicitly considered
• No consideration of diffusion limited oxygen reduction reaction (ORR)



Center for Electrochemical 
  Science and Engineering

External area available can control cracking

J. T. Burns, UVA
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Modeled System: SENT samples

• Finite Element Model (FEM) utilized to predict crack tip conditions
• 2-D geometry, based on single edge notch tension (SENT) specimen of 316L
• Reactive transport model with chemistry dependent electrochemical boundary conditions
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FEM Boundary Condictions:
Anodic kinetics as f([MClx])

316L
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FEM Boundary Condictions:
Cathodic kinetics as f(location, WL, [MClx])

External surfaces Internal surfaces
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Inside crack, hydrolysis drives pH down
Outside crack, HER or ORR drive pH up

pH

pH

• Similar pH’s when comparing concentration (COMSOL) 
and activity based calculations (EQ3/6)

• Can consider just metal chloride concentration (i.e., FeCl2+ 
CrCl3 +NiCl2)
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But, local cathodic current affects crack pH

pH
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pH is a function of both anodic dissolution and local 
cathodic reactions which are both a function of time



Center for Electrochemical 
  Science and Engineering

Limited IR drop along surface and in crack under 
these conditions
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Crack tip pH initially decreases, but increases to a 
steady state

Lc = 20 mm
WL = 5 mm
a = 2 mm
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Vast majority of cathodic current on external 
surface

~7% at steady state
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pH at crack tip ~3, pH cathode ~11
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Revisit relation between [MClx], pH, and ic,loc

• Metal dissolution + 
hydrolysis decreases pH

• Local cathodic reactions 
increase pH

• Must remain < pH 2 for 
active crack tip
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Cathodic current in crack increases with time

time

time
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Crack tip pH evolution

Lc = 20 mm
WL = 5 mm
a = 2 mm
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Crack tip pH evolution

Lc = 20 mm
WL = 5 mm
a = 2 mm
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Crack tip pH evolution indicates crack will die
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Can stabilize crack with external polarization
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Anodic polarization drives crack tip dissolution 
and decreases crack tip cathodic reaction

Metal chloride concentration rises with local cathodic current staying small
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Can achieve with external cathode if large enough

Larger Cathode
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Or if WL is thin enough to increase ORR

Thinner WL
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Thinner WL decreases ic,loc, and increases [MClx]
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Model implies a maximum crack length for 
atmospheric conditions
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For atmospheric exposures, larger a increases 
ic,loc, limits [MClx], and allows high pH
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Conclusions and Implications

• Created model to accommodate changes in sample size, external environment 
(WL thickness and solution) and sample geometry

• Modest anodic polarization of samples can increase electrochemical severity at 
the crack tip
• Are polarizations representative of real life scenarios?
• Are laboratory scale specimens representative of field conditions?

• Strong influence of external surface on crack tip electrochemistry
• Leads to the prediction of a maximum crack size under atmospheric conditions

• Important to understand internal and external cathodic kinetics to approach 
similitude
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Time course of [MClx], ic,loc, and pH

time

time

Lc = 20 mm
WL = 5 mm
a = 2 mm


