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Background

a. Concentrated Solar Power (CSP) plant b. Heliostats focus light on Receiver tubes
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c. Optical Error and Mirror Cracks d. Optical efficiency influenced by optical errors
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Assessment

J. Yellowhair, P. A. Apostolopoulos, D. E. Small, D. Novick, and M.
Mann , "Development of an aerial imaging system for heliostat canting
assessments", AIP Conference Proceedings 2445, 120024 (2022)

www.cspservices.de/performance-testing/
Manual inspection: High cost, slow,
intrusive to field operation

(b)

R. A. Mitchell, G. Zhu, “A non-intrusive optical (NIO) approach to
characterize heliostats in utility-scale power tower plants: Methodology
and in-situ validation”Solar Energy (2020)

Credit: DLR (CC-BY-NC-ND 3.0) * Both rely on visible camera

: : * Need to detect the mirror edges
UAV based inspection: Less cost, more 8

efficient, non-intrusive




Motivation

UAV-based survey of the field relies on visible camera; need to detect the edges
Challenges 1n differentiate the mirrors from the background with visible camera
Polarimetric imaging is a useful aid to help find the edges in these cases
Future work can be image fusion with polarization camera and visible camera

back vs. ground sky vs. sky
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At Sandia’s NSTTF, from UAS, while solar field is tracking:
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Motivation

UAV-based survey of the field relies on visible camera; need to detect the edges
Challenges 1n differentiate the mirrors from the background with visible camera
Polarimetric imaging is a useful aid to help find the edges in these cases

Future work can be image fusion with polarization camera and visible camera

R. A. Mitchell, G. Zhu, “A non-intrusive optical (NIO) approach to
characterize heliostats in utility-scale power tower plants: Methodology
and in-situ validation”Solar Energy (2020)



Motivation

UAV-based survey of the field relies on visible camera; need to detect the edges
Challenges 1n differentiate the mirrors from the background with visible camera
Polarimetric imaging is a useful aid to help find the edges in these cases

Future work can be image fusion with polarization camera and visible camera

Low contrast Low contrast Low contrast between
between adjacent between heliostat heliostat reflection
heliostat mirrors and adjacent and adjacent

background background



Polarization of the Light

Polarization of Light

Polarized light
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Degree of Linear Polarization
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Jing, Zhang & Cao, Yu & Zhang, Xuanzhe & Liu, Zejin. (2015). Sky light
polarization detection with linear polarizer triplet in light field camera
inspired by insect vision. Applied Optics. 54. 8962.
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Unmanned Aircraft System Polarimetric Imaging Setup

Payload Ground Station
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* 19 FPS streaming for operator to control
* Adaptive exposure algorithm to avoid over-exposure
* Capture image with remote control



Unmanned Aircraft System Polarimetric Imaging Setup

UAS + Payload Payload Ground Station
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* 19 FPS streaming for operator to control
* Adaptive exposure algorithm to avoid over-exposure
* Capture image with remote control



Results: Sky-vs-sky

With Rayleigh scattering model, we can predict the sky polarization pattern,

for Degree of Linear Polarization.

a. Reflection b. DOLP Sky Pattern c. DOLP Gradient Sky Pattern
Schematics
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We can plan the flight such that mirror are reflecting region of sky where DoLLP
changes fast (high DoLP gradient), the small angle difference between adjacent
heliostats result in different DoLP values. Arrows indicating the region that will
not serve our purposes.
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Results: Sky-vs-sky

Dec 16th, 2021 RERES 4 sets 40 sets 90%
Apr 28th, 2022 RPELEK 6 sets 78 sets 92.31%

All 108 sets 10 sets 118 sets 91.53%

We counted the edges that were manually identified as sky-vs-sky and
report the number that were found. If the number agrees with the ground
truth of the heliostats, we count this as a successful detection.

DOLP 1 DOLP 1 DOLP
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Results: Ground-vs-Ground

a.Visible Image b.Polarization Image AOP c. AOP Simulation
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The values of the background
AoP and the heliostat mirror
AO0P determine the contrast.
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Future Plan: develop
scattering model to predict
the polarization images of
ground. One can position and
point the drone in
precalculated directions for
sufficient contrast (difference
in AOP) between mirrors and
the background to achieve
high accuracy of detection.
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Results: Back-vs-Ground

b. Polarization Image D(%LP

a. Visible Image

—_

Visible Image: various features in the
background make it difficult to detect the
edges

Polarization Image: easier to single out the
mirror facets.

Some commercial plants have heliostats
with white frames. It could be challenging
for visible cameras to differentiate their
images from the background of the same

color.

In this case, we expect polarization image to
provide sufficient contrast. (We are seeking
potential collaborators to test this case.)
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Results: Mirror Cracks

a. Visible Image b. Zoomed in and Edge Detection

Visible Image: the detection
of cracks depends on the
camera viewing angle and
relative position to the Sun
incidence.

c. Polarization Image d. Zoomed in and Edge Detection
Polarization Image: the DOLP

scattering caused by the
crack results in low DoLP.
Let mirrors reflect high
DoLP region of the sky, the
contrast is better.

Test Date Total Images
Dec 16th, 2021 PAEE N/A 2 sets 100%
Apr 28th, 2022 PAREER 2 sets 30 sets 93.33%

31 sets 2 sets 33 sets 93.94%
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Summary

a. Reflection b. DOLP Sky Pattern c. DOLP Gradient Sky Pattern
Schematics
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* We integrated a polarimetric imaging system on UAS
* We can plan the flight to collect desired polarization
images with good contrast
e In future, we plan to
* Integrate a visible camera for image fusion, adding
color and intensity information to the captured

images.
* Apply the polarimetric imaging system for optical
Same system can be error inspection with method such as UFACET, and
used for mirror soiling for mirror cracks detection for early identification

detection! of potential heliostat failure.
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Field Deployable Mirror Soiling Detection
Based on Polarimetric Imaging

Friday morning 10:30 AM
Emerging and disruptive concepts (Kiva Auditorium):
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