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2 I Utility-Scale Storage System Failures

EPRI BESS Failure Database
https://storagewiki.epri.com/index.php/BESS_Failure_Event_Database




3 Predicting and Mitigating Thermal Runaw;

Validated safety and reliability is one of the critical
challenges in deploying large-scale or mission-essential
energy storage

Safety incidents are rare but possible, incl. external
FRIP@2n we reduce risk?

* Prevent single-point failure from
cascading to large-scale system risk.

* Design inherently safer systems that are
resistant to cascading failure.

Simulations allow exploration of the

design space if well grounded in ]
reality. AW
Ll
: A parameter space analysis can B
ey - prOVIde general Safety-fOCused www.internationalbattery.com
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+ I Nail penetration of pouch cell in stack

Venting removes electrolyte, changes the energy available. Calibrate on max temp.
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New chemisiry moadels successStully predict tull range o1
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> Collectively add heat capacity &
increase time delay for cell runaway.

in net heat capacity.
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6

Simplified scenario and reduced parameter set for propagation mitigation

Cells have a characteristic thermal
runaway temperature.

o Propagation mitigated if the next cell
temperature is less than this.

o Dissipate heat to avoid propagation.

Where can the heat from a failed cell go?

> Along a cell stack and to the
surroundings.

Parameters affecting next-cell
temperature:

> Thermal resistance along the stack.
o Ability to dissipate heat.
> Heat sinks (structure/cooling system).

Module

@

Heat conduction
and initiation of
thermal runaway

Heat release from
thermal runaway

T'p(t)
Tg (O

Te(t)




| Heat transfer along adiabatic stack with thermal resistance,
R”

Chemistry turned off to look for critical TR tempqm}u re
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. | Heat transfer along adiabatic stack with thermal resistance,
R”
Chemistry turned off to look for critical TR temperature
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. | Heat transfer along adiabatic stack with thermal resistance,
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. | Conduction with thermal dilution

Additional temperature reduction can be achieved by
adding inert material (ex: structure, casing, spacers).
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Thermal runaway temperature leading to propagation versus max
cell temperature

Normalized Max Temperature

Previous results determine max target cell

o
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temperature. Relate this to thermal 1.6
runaway/propagation temperature.
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12 I Summary: Cell-to-cell failure mitigation

Non-dimensional parameters can be used to describe heat flows.
> Thermal conduction:

W

i — Rcantact
Bi (L / A) cell
> Heat capacity:
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= Propagation criteria

emax (Bi! ¢scrucu Th.ﬂ - Tc.ﬂ) < HTR

Heat must be removed before the onset of thermal runaway 150~200°C.

Relative time scales of heat flows determine the propagation rate.

Understanding of heat transfer scales is critical for system design.
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Energy flows at the rack/system scale

External fire from vented

electrolyte and products Thermal energy

encountering air stored in rack material
(plastic/metal)

Preheating of
upper modules due

Flow of to convection
vented
electrolyte
and
products Conduction
through the
Heat release from failed module

thermal runaway
. Preheating of
lower module

Source: (top) hitps:
Summary.pdf
(bottom) hitps://www Igessbattery.com/eu/arid/product-info.lg



https://cmte.ieee.org/pes-essb/wp-content/uploads/sites/43/2019/06/2019-SM-UL-9540A-IEC-Lithium-Test-Summary.pdf
https://cmte.ieee.org/pes-essb/wp-content/uploads/sites/43/2019/06/2019-SM-UL-9540A-IEC-Lithium-Test-Summary.pdf
https://www.lgessbattery.com/eu/grid/product-info.lg
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https://cmte.ieee.org/pes-essb/wp-content/uploads/sites/43/2019/06/2019-SM-UL-9540A-IEC-Lithium-Test-Summary.pdf
https://www.lgessbattery.com/eu/grid/product-info.lg

15 I Extending heat transfer concepts from module to rack scale
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Extending heat transfer concepts from module to rack scale
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Example scenario: thermal runaway in a rack of 12 modules
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Nominal case consisting of 12 modules at 96% state of charge.

Thermal runaway spreads through the system in about 1 hour.




s | Total Energy Release vs SOC, Thermal Conductance

Module 6 Failure without Intervention
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10 ‘ Summary: Propagation/Mitigation _ Noowsoc
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Finite element model with chemical source terms tested against
range of propagation/mitigation experimental data
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> Models capture propagation trends including mitigation using
plates and insulation between cells.
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> Models improve understanding of mitigation:
° Heat capacity to absorb energy.

> Thermal resistance to allow heat dissipation along stack and
cooling to surroundings.
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° Parameter space maps out limits of propagation for above
parameters and cell runaway temperature.

> Moving toward more universal parameter space maps.
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» | Summary: Moving toward module-to-module mitigation

o Crude network models allow preliminary simulation of

module-to-module propagation Rack
Understanding mitigation boundaries is important for designing
safe energy storage systems. Modules
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Battery Safety Science

Materials R&D

* Non-flammable electrolytes and electrolyte salts
* Coated active materials

* Thermally stable materials

e Battery calorimetry

Testing

* Electrical, thermal, mechanical abuse testing

* Battery calorimetry

* Large scale thermal and fire testing (TTC)

* Failure propagation testing on batteries/systems

* Degradation and diagnostics during and post battery failurg

\
Simulations and Modeling

* Multi-scale models for understanding thermal runaway

* Validating failure propagation models

* Fire Simulations to predict the size, scope, and
consequences of battery fires

Procedure Development and Stakeholder Interface

* USABC Abuse Testing Manual (SAND 2005 3123)

* OE Energy Storage Safety Roadmap

* R&D programs with NHTSA/DOT to inform best practices,
policies, and requirements

/

Impedance diagnostics
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Sandia is uniquely positioned to study the
entire life cycle of a technology.
New technologies present new risks. A high
rigor environment at Sandia allows those risks

to be adequately managed.



Capabilities and Infrastructure

Battery Pack/System Testing

. Thermal Test Complex (TTC) and Burnsite
Cell and Module Testing i )

Battery Abuse Testing Laboratory (BATLab)
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Thank you

* Funded by the U.S. Department of Energy, Office of Electricity, Energy Storage
program under the guidance of Dr. Imre Gyuk, Program Director.

= Sandia National Laboratories is a multi-mission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-NA-0003525.

= For further information: John Hewson - jchewso@sandia.gov
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2« | Backup materials




Map of limiting temperature versus
*» ¥ thermal resistance, heat capacity and cooling
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2 I Propagating Thermal Runaway

Node Controller

Single cell fallure

Battery Protection Unit (BPL')

Battery Modules

All images on this slide from: “McMicken Battery Energy Storage System Event - Technical Analysis and
Recommendations,” DNV GL Energy Insights USA, Inc., Doc. No. 10209302-HOU-R-01, July 18, 2020.
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