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We made significant progress in four areas to resolve the opacity
puzzles and the solar problem
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* Refined analysis methods
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Effort2: Oxygen opacity measurements (D. Mayes)
 Model and data agree on BF but not on BB (140 eV, 8e21e/cc)

* Performed a few experiments aiming at (180eV, 3e22 e/cc) §

Effort3: Time resolved measurements (Poster: G. Loisel) §
* Measured T,(t) and n,(t) | | - Wavelength |
* Investigated the importance of temporal gradients ; Te (t) e me(t)

Effort4: Help independent experimental investigations
* Work closely with NIF opacity team (T. Perry)




We made significant progress in four areas to resolve the opacity

Data (2015) || || | 3
- Data (2020) Mﬁ w r |
- Model o th
w‘ﬂ r{k | ;ﬂ“h?

- fl’
M~+ i+ kL N

Motivation: There is significant disagreement between
measured and modeled iron opacity

Opacity

\_ — Wavelength




We made significant progress in four areas to resolve the opacity
puzzles and the solar problem

E Method1
= Method2

ffortl: Revisit iron opacity results

* Performed more experiments for scrutiny
* Refined analysis methods

Opacity

Effort2: Oxygen opacity measurements (D. Mayes)
 Model and data agree on BF but not on BB (140 eV, 8e21e/cc)
* Performed a few experiments aiming at (180eV, 3e22 e/cc)

Opacity

Effort3: Time resolved measurements (Poster: G. Loisel) :
* Measured T,(t) and n_(t) o '__JFVV_av_e'Iength'

* |nvestigated the importance of temporal gradients Te(t), ne(t)

Effort4: Help independent experimental investigations
\. * Work closely with NIF opacity team (T. Perry)




We made significant progress in four areas to resolve the opacity
puzzles and the solar problem

Effortl: Revisit iron opacity results -

Method1

* Performed more experiments for scrutiny Method2

. * Refined analysis methods

Wavele.ngth |




We made significant progress in four areas to resolve the opacity
puzzles and the solar problem

-

Effort2: Oxygen opacity measurements (D. Mayes)
 Model and data agree on BF but not on BB (140 eV, 8e21e/cc)
* Performed a few experiments aiming at (180eV, 3e22 e/cc)

Opacity ‘_)

| Wavellength'




We made significant progress in four areas to resolve the opacity
puzzles and the solar problem

(Effort3: Time resolved measurements (Poster: G. Loisel) 1 |
* Measured T(t) and n_(t) — —
* Investigated the importance of temporal gradients ' b | '-

.




We made significant progress in four areas to resolve the opacity
puzzles and the solar problem

Effort4: Help independent experimental investigations
* Work closely with NIF opacity team (T. Perry)




We made significant progress in four areas to resolve the opacity
puzzles and the solar problem

>EData2o1s) || | | -
- L . 'S F Data (2020) -
Motivation: There is significant disagreement between 3 | model r il Lj%wrwﬂ'ﬂ |
: : 3 5 .
measured and modeled iron opacity © i i S TWUE
Effortl: Revisit iron opacity results Yvavel.ength.
E Method1

= Method?2

* Performed more experiments for scrutiny |
_Method3 AN ;‘ ;

* Refined analysis methods

Opacity

Effort2: Oxygen opacity measurements (D. Mayes)
 Model and data agree on BF but not on BB (140 eV, 8e21e/cc)

* Performed a few experiments aiming at (180eV, 3e22 e/cc) §

Effort3: Time resolved measurements (Poster: G. Loisel) §
* Measured T,(t) and n,(t) | | - Wavelength |
* Investigated the importance of temporal gradients ; Te (t) e me(t)

Effort4: Help independent experimental investigations
* Work closely with NIF opacity team (T. Perry)




‘ Solar structure simulated by Standard Solar Model

disagrees with Helioseismology
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10-30% opacity increase in the model can help resolve the discrepancy. Is opacity wrong? ‘

[1] Basu et al Phys. Rep. (2008).

[2] Asplund et al, A&A (2021)

[3] Magg et al, A&A (2022)
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‘ We found severe iron-opacity model-data discrepancies
as conditions approach the solar interior conditions

e Solar models disagree with helioseismology
- Is calculated solar opacity accurate?
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discrepancies as conditions approach the solar interior

conditions

* Solar models disagree with helioseismology
- Is calculated solar opacity accurate?

We tound severe iron-opacity model-data E
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We tound severe iron-opacity model-data
discrepancies as conditions approach the solar interior
conditions

* Solar models disagree with helioseismology
- Is calculated solar opacity accurate?

Bailey, Nagayama, Loisel, Rochau et al., Nature 2015
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3 categories of discrepancies

Low quasi-continuum Narrow BB Deep




We measured opacity of Cr, Fe, and Ni at anchor2
Systematic study helped refine hypotheses for discrepancy
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A systematic study suggested a few theoretical
refinements and deepened one puzzle
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A systematic study suggested a few theoretical
refinements and deepened one puzzle
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A systematic study suggested a few theoretical
refinements and deepened one puzzle
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‘ We have been working on four investigations for resolving
the opacity puzzle and the solar problem

oxygen opacity measurements J\\

this talk by T. Nagayama from SN9

* Temperature and density re-analysis
* More experiments
* Re-analysis

\_
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Z time-resolved experiments
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(379 talk by T. Perry from LANL)
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Helping NIF opacity measurements}

Define high-fidelity opacity data
Pros and cons of NIF and Z
Scrutinize each experiments and analyses
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‘ We have been working on four investigations for resolving
the opacity puzzle and the solar problem

Revisit Z iron opacity results \—\
(this talk by T. Nagayama from SN9 ‘

* Temperature and density re-analysis

* More experiments

* Re-analysis ]
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Revisiting Z iron opacity results |

How is opacity measured? |
Why are experiments challenging?




‘ Sample opacity is inferred by measuring backlight with E
and without the sample
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Sample opacity is inferred by measuring backlight with
and without the sample
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Sample opacity is inferred by measuring backlight with
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‘ Sample opacity is inferred by measuring backlight with
and without the sample
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‘ Sample opacity is inferred by measuring backlight with E

and without the samnpole
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Challenging requirements for HED opacity measurements

Opacity measurements
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Background €,
Sample thickness pL

Challenging requirements

* Bright backlight

* No gradients (spatial, temporal)

* Local Thermodynamic Equilibrium (LTE)
* Accurate plasma diagnostics



Challenging requirements for HED opacity measurements E

Opacity measurements Challenging requirements ‘
I, —¢€, * Bright backlight
T, = B * No gradients (spatial, temporal) |
v~ &y * Local Thermodynamic Equilibrium (LTE) .
k, = —InT, /pL . Accu?te plasma diagnostics
'| Sources of uncertainty |' |
* Unattenuated B,

* Background €,
* Sample thickness pL

Focus of this talk ‘ ‘




Experimental challenges are platform dependent

( Approachl: Area backlight (e.g., Z)
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Experimental challenges are platform dependent E

( Approachl: Area backlight (e.g., Z) \

How to constrain B,, at Z
A
o ~ T — L, — €, * Use half-moon sample
. B, * Field 6 spectrometers per experiment
* Perform many backlight-only experiments
\I - E i
_Q €, =>» Key question is how to use this
information
Fe opacity |
sample
We use an areal backlight. Our main challenge is
determining the unattenuated backlight intensity B,




Transmission spectra is determined by dividing attenuated E
by unattenuated spectra =2 +20% uncertain

|We use spatial shape to improve our accuracy of our transmission analysis \ ‘
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Transmission spectra is determined by dividing attenuated E
by unattenuated spectra =2 +20% uncertain
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Transmission spectra is determined by dividing attenuated E
by unattenuated spectra =2 +20% uncertain
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‘ Spatial shape has unattenuated and attenuated side
and provide essential clue on transmission
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‘ Spatial shape has unattenuated and attenuated side
and provide essential clue on transmission
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We analyze measured half-moon sample aided by
backlight statistics to improve transmission accuracy
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We analyze measured half-moon sample aided by
backlight statistics to improve transmission accuracy
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We analyze measured half-moon sample aided by
backlight statistics to improve transmission accuracy
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We analyze measured half-moon sample aided by
backlight statistics to improve transmission accuracy
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‘ TPDs* are converted to opacity probability distribution by

propagating all three sources of uncertainties E
Asymmetric non-Gaussian opacity PDF* : . : : . |
i

- 2015 3 shots with +20% agreement £

i

P(x,)

'_‘

* Large volume of backlight-only data statistics
* Monte Carlo for robust errors propagations

* Backlight intensity, B,

* Background, €,

« Sample areal density, pL

Limitation: Old TPD methods rely on brightness reproducibility in some ways ‘

TPD = Transmission Probability Distributions




‘ Backlight brightness changed over the decade due to E
experiment and diagnostic changes

We have been performing opacity experiments more than a decade
Changes we made ‘
* Spectrometer improvements \ [
 Crystal
* Material (KAP, RAP, PET) '
* Removal of 013 plane > Could affect apparent brightness
* Crystal edge cover reproducibility |
 Aperture height
* Reflectivity models (XRV, XOP) j |
* Keep collecting backlight-only data for accurate use of old TPD methods |
 Develop new TPD methods that do not rely on brightness reproducibility ‘




‘ Backlight brightness changed over the decade due to E
experiment and diagnostic changes

We have been performing opacity experiments more than a decade
Changes we made Backlight changes over the decade ‘
* Spectrometer improvements \ of

 Crystal
 Material (KAP, RAP, PET)
e Removal of 013 plane
* Crystal edge cover
* Aperture height : Mg,
* Reflectivity models (XRV, XOP) j 0% : 10 15 17 16
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* Keep collecting backlight-only data for accurate use of old TPD methods
 Develop new TPD methods that do not rely on brightness reproducibility ‘




Over the past three years, we continued to perform BL-
only data to improve backlight statistics

With KAP crystal (44->62) _| Before 2019 (44) ‘_

We have also increased the number of RAP backlight data (8 = 19) |
e
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only data to improve backlight statistics

With KAP crystal (44->62)
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We have developed three new TPD methods that do not
rely on brightness reproducibility
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‘ We have developed three new TPD methods that do not
rely on brightness reproducibility
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(—[ Polynomial fit ]—\

Search for transmission such
that its correction produce a
smooth spatial profile

No BL statistics needed
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‘ Search for the transmission that makes the T-corrected
profile as smooth as measured unattenuated profiles
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‘ Search for the transmission that makes the T-corrected
profile as smooth as measured unattenuated profiles
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Boundary region 1400

1200

] Corrected by T=0.3 |
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‘ Search for the transmission that makes the T-corrected
profile as smooth as measured unattenuated profiles

Stepl: compute polynomial-fit y?
as a function of T

Boundary region

] Corrected by T=0.3 |

N /

02 04 06 08 10 12 14
Transmission

Probability Density$

N B [#)] co
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How can we validate the accuracy of these TPD methods?
=» Synthetic-data tests

(—[Spatial shape]—\

Reproduce spatial shape
after correcting transmission

Need collection of spatial prof.

Intensity

(—[ Spectral shape]—\

Assume transmission at one
wavelength is known
=» High-transmission method

Need collection of spec. prof.

Intensity

Wavelength

(—[ Polynomial fit H

Search for transmission such
that its correction produce a
smooth spatial profile

No BL statistics needed

Intensity




Method accuracy can be tested with synthetic-data tests
Stepl: compute synthetic transmission

1.0 From PrismSPECT database |
0.8 _ Element=Ni |
_5 I 4 Te=182eV
B 06 Jd ne=3e22cm33 .
g 1 nil=1.41e18 Ni/cm?
= 04 .
0.2 l h - |
0'07 8 9 10 11 12 13 14
Wavelength [A] ‘



Step2: compute synthetic half-moon data

2000

Method accuracy can be tested with synthetic-data tests E

2000

—9° Spectrometer +9° Spectrometer

__ 1000 __ 1000 ‘
£ £
s S
@ @ " o i
o o : .
z z |
[a) a
-1000 -1000
B
-2000 -2000
7 8 9 10 1 12 13 14 7 8 9 10 11 12 13 14
Wavelength [A] Wavelength [A]
i

*Backlight-only data from 22972




Step2: compute synthetic half-moon data

2000

Method accuracy can be tested with synthetic-data tests E

2000

—9° Spectrometer +9° Spectrometer

1000 1000

€ €
&l = ‘
= = At
T T | " |
. e, T TE T
S S
B % |
© 1000 = 1000
B
-2000 -2000
7 8 9 10 11 12 13 14 7 8 9 10 11 12 13 14
Wavelength [A] Wavelength [A]
Q. Why using experimental BL-only data? |
i

*Backlight-only data from 22972




Step2: compute synthetic half-moon data

2000

Method accuracy can be tested with synthetic-data tests E

2000

—9° Spectrometer +9° Spectrometer

1000 1000

€ €
&l = ‘
= = I".‘ At
T T i | |‘ |
= 0 = 0 w TP 4 ”. m"
S S
= 7 |
© 1000 = 1000
B
-2000 -2000
7 8 9 10 11 12 13 14 7 8 9 10 11 12 13 14
Wavelength [A] Wavelength [A]
Q. Why using experimental BL-only data? |
i

*Backlight-only data from 22972




Method accuracy can be tested with synthetic-data tests
Step2: compute synthetic half-moon data

2000 2000
—9° Spectrometer +9° Spectrometer
— 1000 — 1000 ‘
e €
S S |
: =, T
a -1000 8 -1000
B
-2000 -2000
7 8 9 10 11 12 13 14
Wavelength [A]
. BL
- _g° Y / sls ; * 4+ 99 Q. Why using experimental BL-only data?
- Synthetic HM prof 1.7 _ _ ,
= A \ 7" A. Resulting synthetic data have real issues
= Original BL only prof | | : ) ,
c ' \ ; imprinted on the data :
= e.g.) Spatial shape, bumpiness, noise, etc |
SN S el : these issues

=» We can study how well TPD methods work under ‘

*Backlight-only data from 22972




Method accuracy can be tested with synthetic-data tests
Step3: Analyze the synthetic data and compare with true
transmission spectra

1.0 Correct answer ‘

h M M Inferred transmission

0.0 lllllllllllllllllllllllllllllllllllllllllllll

o
00}
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O
o

o
(V)

Transmission
o
L
||||||||||||| |||||||
e
—
T

o

Wavelength (A)

Step4: Repeat it for 20-50 times using independent calibration !
measurements and check the accuracy of inferred uncertainty ‘




rreiiminary analysis or z2/7o04 (ancnorZ re) snowed
excellent agreement between three new methods and old

reciultg
1.4x10* - TPD6: Spatial shape ‘
12x10* F TPD7:Spectral shape
—_ - TPD8: Polynomial fit
2 1.0x10" | |
s C
= 8.0x10° F .
.B‘ N
C 6.0x10° |
S .
4.0x10° | |
2.0x10° F
0 : [ ] z » z 1 z z 2 ] 2 z » | z I
6 8 10 12 14 |
Wavelength (A)
TPD methods could fail when their underlying assumptions fail. ‘

Thus, applying various TPD methods will help understand characteristic of each data set.




rreiiminary analysis or z2/7o04 (ancnorZ re) snowed
excellent agreement between three new methods and old

rec<iilte |
1.4x10" & TPD6: Spatial shape ‘
12x10* F TPD7:Spectral shape
= F TPD8: Polynomial fit |
= 1.0x10"E olId TPD results
< 8.0x10° F !
> "
9 6.0x10° |
S .
4.0x10° |~ |
2.0x10° F
0 N "N BT R T T T ST TR S R i

Wavelength (A) ‘

TPD methods could fail when their underlying assumptions fail.
Thus, applying various TPD methods will help understand characteristic of each data set.




We are re-analyzing all anchor2 iron experiments
- 19 experiments, 75 data sets, and 450 spectral images
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R
- .

Re-analysis of all iron experiments (anchor 1, 2, 3, etc) involve

42 experiments and roughly 1,000 spectral images



‘ Anchorl data provide additional tests on the methods
as well as potential Z-NIF data-to-data comparison

140

'h\‘ﬂmlf k‘ —————
| , 2 experiments
— 6 experiments

Why important? |

 Consolidate anchorl result
* Check experiment accuracy |

* NIF-Z data comparison .

(@)
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Intensity (J/str/A)
(0 0]
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vt :"';'W‘ LEW
Ny wwﬂm Ww’” o |

Wavelength ‘

[1] Bailey et al PRL 2007 [2] Bailey et al Nature 2015




‘ Anchor3 data will test opacity models at most extreme
conditions available

120 [yttt

100 6€Xper|ment5 Most extreme conditions ‘
“} , —> 11 experiments T,=195 eV |

80

n,=4e22 electrons/cm?3
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Temperature and density re-analysis




‘ Temperature and density analysis were refined with
refined line shapes and improved analysis method

1. Line shape improvements [1,2] T Y — S _
I Y oo o '
0.10 | Lee model (MELS) -
Quantum Some i ’ |
v 0.08
Strong-collision corr?  No  Yes 2 -
Q I
Screening? No Yes % 0.06 F :
O I
All order? No No 5 -
0.04 |
2. Analysis method [
0.02 |
» Multi-line fitting (¥ 2, Bayesian) tends to - '
underestlmat.e parameter L.mcertzjunty o 0'09640 1650 1660 1670 165( 1
* New method incorporates inconsistencies into Photon energy (eV) |
parameter uncertainties ‘

[1] Nagayama et al HEDP (2016) [2] Iglesias et al HEDP (2016)



‘ Temperature and density analysis were refined with
refined line shapes and improved analysis method

1. Line shape improvements [3,4]

Quantum Some

Strong-collision corr?  No  Yes Yes 2
Screening? No Yes Yes (F:
All order? No No Yes %)

2. Analysis method

» Multi-line fitting (¥ 2, Bayesian) tends to
underestimate parameter uncertainty

* New method incorporates inconsistencies into
parameter uncertainties

0.12

0.10

0.08 |
0.06 |
0.04 |

0.02 |

0'0?640 1650 1660 1670 168( k

L Obrien- Hooper (I\/IELS) -
L Lee model (MELS) -

Photon energy (eV)

[3] T. Gomez PRL (2020) [4] T. Gomez PRL (2021)



‘ Temperature and density analysis were refined with
refined line shapes and improved analysis method

1. Line shape improvements [3,4] T — e _
T oo e 2 '
0.10 | Lee model (MELS) , -
uantum Some " "
2 0.08 E - - - Reproduced ] [
v 0.
Strong-collision corr?  No  Yes Yes 2 - ‘ by Gomez -
Q [
Screening? No Yes VYes % 0.06 F .
p [
All order? No No Yes 5 [
0.04 |
2. Analysis method [
0.02 |
» Multi-line fitting (¥ 2, Bayesian) tends to - '
underestlmat.e parameter L.mcertzjunty o 0'0](.)64 1650 1660 1670 68( :
* New method incorporates inconsistencies into Photon energy (eV)
parameter uncertainties ‘

[3] T. Gomez PRL (2020) [4] T. Gomez PRL (2021)



‘ Temperature and density analysis were refined with
refined line shapes and improved analysis method

1. Line shape improvements [3,4] T — E— _
—m-m oo e 2 '
0.10 | Lee model (MELS) , -
uantum Some " "
2 C - - - Reproduced ] [
Strong-collision corr?  No  Yes Yes 2 0.08 T by G -
© - Best line- yhomez 4 1]
Screening? No Yes Yes i 0.06 | shape by -
All order? No No Yes = " Gomez
0.04 |
2. Analysis method [
0.02 |
» Multi-line fitting (¥ 2, Bayesian) tends to - ,
underestlmat.e parameter L.mcertzjunty o 0'0](.)64 1650 1660 1670 68( :
* New method incorporates inconsistencies into Photon energy (eV)
parameter uncertainties ‘

[3] T. Gomez PRL (2020) [4] T. Gomez PRL (2021)



‘ Temperature and density analysis were refined with
refined line shapes and improved analysis method

1. Line shape improvements [3,4]

Quantum Some
Strong-collision corr? No Yes Yes

Screening? No Yes Yes

All order? No No Yes

2. Analysis method

» Multi-line fitting (¥ 2, Bayesian) tends to
underestimate parameter uncertainty

* New method incorporates inconsistencies into
parameter uncertainties

0.12 (rrrrecrrrrereTTTTTTTTTTTTTTTY
L Obrien- Hooper (MELS)
0.10 | Lee model (MELS) ,
9] 0.08 |
© - Best line-
2 0.06 | shape by
£ Gomez
— 0.04 F
0.02 |-
0-00540 1650 1660

Anchor 2*: n, =3.1e22 = 3.5e22 (+13%),

T.=182 - 188 eV (+3%)

- - - Reproduced ]
by Gomez

1670
Photon energy (eV)

163 I

* Reanalysis over the first three shots. All iron data need to be re-analyzed.



In the next 2-3 months, temperature, density, and opacity of
all iron data will be reanalyzed with the refined methods

Are experiments accurate?
Can Z data be directly compared with NIF data?

Anchor2: 3 = 19 shots |

What is the true model-data discrepancy?
What’s causing the discrepancy?

Anchor3: 6 2 11 shots
What is the model-data discrepancy at most extreme |

Anchorl: 2 - 6 shots ‘

conditions?
Others: 1 2 6 shots

Can we control experiments with sample location, tamper, and preheat shields? i




Our progress in opacity analysis and temperature and
density analysis impact the other three opacity projects

(

Revisit Z iron opacity results
this talk by T. Nagayama from SNL)

\_

Temperature and density re-analysis
More experiments
Re-analysis




Our progress in opacity analysis and temperature and
density analysis impact the other three opacity projects

Z oxygen opacity measurements
(2nd talk by D. Mayes from UT)

g

Z time-resolved experiment
(poster by G. Loisel from SNL)

'

\

.

\

Opacity

\Aln\/nln.ngfh

(3" talk by T. Perry from LANL)

* Define high-fidelity opacity data
* Pros and cons of NIF and Z
* Scrutinize each experiments and analyses

g y,
({Helping NIF opacity measurementsJ\

)

H Please see these talks to learn overall progresses in the stellar opacity projects E



We made significant progress in four areas to resolve the E

opacity puzzles and the solar problem. s

. . e e g . O | Data (2020)
Motivation: There is significant disagreement between 3 | model
o

8 M,JM

i

I

. . 3 l-++ _*td_t
measured and modeled iron opacity v :
. ep - . Wavelength
Effortl: Revisit iron opacity results — 'dlg .
. . > | VIELho
* Performed more experiments for scrutiny £t Method2 I
. . © s, N |
* Refined analysis methods gj'\"eth"?’ Y "

Effort2: Oxygen opacity measurements (D. Mayes)
 Model and data agree on BF but not on BB (140 eV, 8e21e/cc)
* Performed a few experiments aiming at (180eV, 3e22 e/cc)

Effort3: Time resolved measurements (Poster: G. Loisel)

* Measured T,(t) and n_(t)
* |Investigated the importance of temporal gradients

Effort4: Help independent experimental investigations
 Work closely with NIF opacity team (T. Perry)

Opacity

Wavele.ngth |

'_ Wavelength




