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Background: Nanoscale Materials for bulk scale applications
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Early Career, Geo-Inspired.:

UNCAGE < ME
CSTs for Rad Ion High Selectivity and Capture (TRL 1-9)
CSTs: Research (1993): Sandia LDRD project — gram reactors Fukushima Daiichi Nuclear Power Plant Accident, March 2011
Crystalline Development: DOE/EM — 1-5 gallon reactors - 2011 SNL re-licensed CST IP to Honeywell UOP LLC who coordinated with
s . Commercialization: CRADA with UOP Corp., Toshiba for implementation in the SARRY™ Process at Fukushima
Silico-titanates JONSIV™ [E-910 & IE-911 (Dec 1995)
1800 Ib lots produced SARRY™: Simplified Active Water Retrieve and Recovery System

augmentation of Accumulated Water processing Facility
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2011: UOP re-licensed CST IP, in oot & becssd  Amount of processed accumulated water
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20,0040

months of Fukushima accident
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1o E . 160,000
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. ] decontamination factors of Cs Hosn KURION 50 -20th, SARRY 25 4l
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Midcareer, Computationally Designed:
MOF for Ambient O, Separations from Air. (TRL 1-7...)

UNCAGE % ME

) . . High Performance Computing (4000 processor hrs, 6000 processor days (Redsky, Skybridge
Computationally Designed Materials ° puting (4000 p p ys (Reasky, Skybridge))
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Industrial Scale Up
To Commercialization

IP: US Patent #
10,549,261
Awarded Feb 4, 2020

SNl » DOE/SBIR Phase [
"0 oz 0  ds o8 10 EYI9 (IP licensed),
PIP, two industrial partners
0.20

§ e v o DOE/SBIR Phase I

50 R FY21 (IP re-licensed),

% 0.10- /of;,o" 1+ industrial partners

ﬂ ,ooo ,Woo

Soos  Lege” DOE/SBIR Phase 114

g - ﬁﬁa"" F Y2.2- (IP Ife-licensed),
Chem. Mater. 2016, 28(10), 3327 W , 1+ industrial partners

Chem. Mater. 2015, 27(6), 2018

Absolute pressure, mmHg
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Computationally Driven, Experimentally Validated, UNCAGESME
Rapid Materials Discovery. BES/EFRC: UNCAGE-ME*

*Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy

TRL 1: Design and tune adsorbents to selectively adsorb industrial caustic acid gases P

Optimized Eu-DOBDC + 4H,0 + 4NO, + 4S0,,

DFT & AIMD for mixed

Gas competitive binding

PCCP, 2019, 21, 23085

ACS AMI, 2020, 12, 4, 4531

Angew Chemie, 2021,
60(20), 11514

Industrial Acid Gas Adsorbents:
| RE-DOBDC MOFs

v 4CS AMT 2019, 11, 46, 43270
o ACS AMI, 2020, 12, 17, 19504
ACS AMI, 2020 12, 20, 22845
ACS AMI, 2021, submitted

Y-DOBODC + NO,, B-508nm | Y-DOBDC + Hy0, B-628nm

Mixed gas adsorption Materials

Mixed H,0 + SO, adsorption testing

+ DMF/H,0/HNQ,
ACS AMI, 2021, 13, 7278

[ sstngsent )

115°C, 2 days

Mg K - 38%

k-
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Nanoporous Gas Adsorption Materials UNCAGE ¥ME
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I. Rare Earth —- DOBDC MOYFs, Acid Gas Durability

omputation

Materials

adsorption
Testing
aracterization

RE-DOBDC MOFs

How to design and tune adsorbents to selectively adsorb acid gases? ﬁ

Rare earth elements have been shown to preferentially bind to acid gases:
Optimization of binding to framework but not too strong as to be destructive

Dorina Sava Gallis

- Lanthanide oxygen-sulfur catalysts (Kay et.al, US Patent 5,213,779 (1993))

- Metal organic coordination polymers with Tb3* have a strong affinity and coordination binding to H,S ihad A
(Anal. Chem, 2013, 85,22,11020) Susan Henkelis

- Europium has high selectivity for hydrogen sulfide (Dalton Trans., 2016, 45, 928)

Unit Cell = RE ,(n;-OH),(C;O.H,)s(C;O.H5), + 12 H,0
M=RE =Y, Eu, Tb, Yb
DOBDC = 2,5-dioxido-1,4-benzenedicarboxylate

| DMF}'HEDHHNga

115°C, 2 days

Sava Gallis et al. ACS Appl. Mater. Interfaces 2017, 9, 22268; CrystEngComm 2018, 20, 5919; JPPC 2018, 122, 47, 26889
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RE-DOBDC MOFs

RE=M=Y, Eu, Tb, Yb
DOBDC = 2,5-dioxido-1,4-
benzenedicarboxylate

Single-crystal X-ray diffraction
Eu-DOBDC

Tetragonal, 3D framework P4nc
a=b=15.5567 A’

c=21.334 A

a=pf=y=90° = V= 15163.06 A>

Sava Gallis et al. ACS Appl. Mater. Interfaces 2017, 9, 22268; CrystEngComm 2018, 20, 5919; JPPC 2018, 122, 47, 26889
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DMF;’HEDHHNEE_

115°C, 2 days

THE UNIVERSITY OF
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National Laboratory
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NIVERSITY.

Unit Cell =
RE ,(13-OH),4(CgO¢H, )5 (CsO4Hs),
+ 12 H,0

The RE-DOBDC platform is based on
building block akin to prototypical Zr-
hexanuclear cluster of UiO-66

yet with an unsaturated metal bond.

A combination of monodentate and
bidentate linker bonding to metal center

Resultant RE-DOBDC MOFs
Octahedral cages of ~14A diameter,
accessible via triangular windows of

~5.5A

UNIVERSITY OF UNIVERSITY of
MICHIGAN UF | FLORIDA
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RE-DOBDC MOFs

* Lanthanides provide unique characteristics not
& 97 DMF/H,0/HNO, found in transitions metals.
N d | § = * High coordination numbers (8-9) and new

15°C 2 days & ' optical transitions facilitated by 4f electrons.

DOBDC Organic Linkers
Bidentate Monodentate
7/ /
Y Q- Y —0 Q=
Yy—0 0o—Y Y—0 T
7/ VA

T

57 58 0 &1 2 B4 65 66 87 58 69 1
Y JLa Ce Pr Nd Pm Sm Dy Ho Er Tm Lu
liriurn Lanthanum || Cenum F 5 Gadoinwm il Terowm M Dysprosm | Holmwm Ertium Thulium Lutasum
8E.906 138505 || 140116 || 140.808 144,243 | 144913 150,36 157.25 158,825 162.500 || 164,930 167259 | 168.834 174,967

Vogel, D. J., et. al., . PCCP 2019. 21, 23085-23093. Sava Gallis, D. F., et. al., ACS Appl. Mater. Interfaces 2019; Sava Gallis et al.
ACS Appl. Mater. Interfaces 2017, 9, 22268; CrystEngComm 2018, 20, 5919; JPPC 2018, 122, 47, 26889
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BET adsorption data confirming open porosity
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Mixed Gas: H,O + NO, adsorption, RE-DODC MOFs vunNcAGE“ME
(RE=Y, Yb, Tb, Eu) T ACS Apt Mater, nefaces 019, 1040) 45270

4 YbDOBDC
omputatio | YDOBNDO(:X 24 hrs 1 ——NOx 24 hrs
— NOx 1hr 7 ——NOx 1 hr
: isti — Pristine
Mixed gas ) pristine —_ -
: - =]
: 3 g
“ Resultant measured & : ]
- NO, level ~40ppm %‘ . ‘é ]
- Humidity ~75% & g
E | - A A A A A A
] A A A i A A A A A A
5 10 15 2 25 3 35 aNochangein XRD 1° 15 20 25 30 35 40
o 2-theta/°
2-theta/ patterns after 24 hr
_ _ e exposure - EuDOBDC
NO, is generated in 1 —  NOX 24 hrs 1 NOx 24 hrs
an adsorption ] ——NOx 1hr ] ——NOx 1hr
P | ot - ] pristine
chamber at room 1 pristine 3]
t t . . L ~ =
cmperature 1t step: Generation of nitrous acid via 3 2 |
. 7. . . 5 - 7]
acidification with H,S0, 2 g
2 NaNO, + H,SO, — 2 HNO, + Na,SO, £ £ ]
G |
2 step: Nitrous acid decomposition E N \ | 1
2 HNO, — NO, + NO + H,0 7 N A . N .
] 1 . A | S
. A A A A, N l l
Bulk NO, prep from UNCAGE-ME team: : : : : : : 1 A A A
Bhattacharyya, Han, Joshi, Zhu, Lively, Walton, Sholl, Nair 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
J. Phys. Chem. C. 2019, 123, 2336 2-thetal® A
R, U.S DEPARTMENT OF Office of | g ialhetitute OAK RIDGE Sandia THE UNIVERSITY OF LEHICH UNIVERSITY OF UNIVERSITY of
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Y-DOBDC: IR and thermal data showing UNCAGE ¥ME
nanopore adsorption of NO_ species

100

2NO, = 2NO + O, @ 150°C 1n all plots,
confidence between IR and TGA that NO, adsorbed

Representative IR and TGA/MS of all analogs in series

<1}
Q
5
[}
s 120 0.1
s GAV1556 YDOBDC Post 24 hour NOx 001 r
- 20190410YDOBDC GAV1556 post 24 hrs NOX_0S1619 tai-
32 H20
| |
YDOBDC |
20 | —pristine [ : 1009
—NOx 1hr I |
——NOx24hrs | | F 001
] . ] " | ¥ I . | ' 1 ! o
1800 1600 1400 1200 1000 800 = ] " <
< =
E 801 _ * _ 3
g 5
g 6]
1 1544 Asym. NO, stretch | NO . 5
2 1325 Sym. NOg stretch L 0.001
3 1296 Asymmetric NO, stretch (R—ONOJ co2 [
4 1206 C-O stretches of organic nitrates/nitrite 60
5 1177 C-Ostretches of organic nitrates/nitrite |
6 1038 symmetric NOs stretch (R-ONO) v WWM
7 960 aromatic C-N stretch of the nitro group
Peak assessments from 40 : : : : : : , 0.0001
- Chem. Mater. 2017, 29, 4227 8 797 N-O stretch (R-ONO) 100 200 300 400 500 600 700 800
- Bhattacharyya, Han, Joshi, Zhu, 9 755 N O, deformation in R—ON O N—O stretch in R-ONO Temperature (°C) Universal V4.7A TA Instruments
Lively, Walton, Sholl, Nair 10 733 NO- deformation in R—ONO;

J. Phys. Chem. C. 2019, 123,2336
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Emission data per unique metal centers, NG A e e
Quenching with NO, adsorption

YDOBDC emission 350 nm YbDOBDC emission 365 nm
- pristine - pristing
; — MO 24 hrs ; — NOx 24 hrs
i Eu 3 - 5 -
620 - @ 1 5
9 ) 2
1 2 2 ]
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£ i - 4
C
S— 560 - - -
2 1 400 450 500 550 600 650 400 450 500 550 600 650
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L 520 il i ToDOBDC emi;sim 365 nm EuDOBDC emission 365 nm
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| - e [ O 24 TS —_—Ox 24 hrs
500 - Y Tb Yb i |
= =
1 Qo Q 8 " :
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— T T T T T ] 8 emission spectrum
35 40 45 50 55 60 65 70 = — ]
Atomic number ] |
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Computational Approach: Modeling f-electron containing systems

Compuiaton. How to efficiently simulate RE-MOFs and accurately calculate (1) the
geometric and (11) the electronic structure?

Different Methods/Corrections Tested: Jessica Rimsza

| Characierization [ Large core potential (LCP): 4f-electrons in Ln is treated as part of the core (limited involvement in

bonding and adsorption properties)

- Full valence potential: simulated 4f-electrons as valence (can be involved in bonding and adsorption)
- Hubbard corrections (1-9): used to correctly simulate band gap energies with f-electron containing

molecules

D. Jon Vogel

- Spin restricted/unrestricted: changes if electrons must be pair (restricted) or unpaired (unrestricted)

l

Validation of calculated binding energies

Additional Details:

Vienna ab initio Simulation Package
PBEsol exchange correlation functional
DFT-D3 used for vdW interactions
Gamma point calculation

Vogel, D.J.; Sava Gallis, D.F.; Nenoff, T.M.; Rimsza, J.M.
PCCP, 2019, 21, 23085-23093.

s U.S. DEPARTMENT OF Ofﬁce Of “ Georgia

£ .-:-5 ENERGY Science || @iTech f\‘—:ii":l,,i | %9&,‘&,&{2&5

UNCAGE-ME Collaborative Studies, Univ AL, Dixon Group:
Performing higher order (e.g. coupled cluster)
calculations on smaller clusters of the MOF structure,
Binding with different gas molecules,
Validation of calculated binding energies

Dixon, et. al., Comput. Theor. Chem, 2017, 1120, 46

Sandia 'ERS v :
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Use of DFT modeling to explain structure — property u~Nncace“me
relationships of RE-DOBDC MOF

Experimental data is supported and explained by complimentary DFT modelin
' - * Experimental MOFs PXRD: all stable under 24hr humid NO, exposure
* Calculated binding energies for H,O & NO,: unsaturated metal sites prefer H,O

adsorption : _ g .
60 IF{E DOBDC: MOF Bmdu:g Enﬁergn‘.-sI

"

D. Jon Vogel

oNO, NO,
: mH,0
70k ¢3S0, | Jessica Rimsza
® ]
[ ] @
= Spin-unrestricted DFT with full 4f Valence E -80} .
Potential + U* 2
&
® Three different gases considered: E -90 .
H,0, NO,, SO, (one molecule at a time) -
=
= Similar strong preference for H,O and SO, E -100 8 - . |
= Different selectivity for H,O v. NO, ¢ ¢
NO, not as strongly bound, .
possible preferential ad-/desorption -11or 7 H,0
material
= Metal center of MOF may play an added role -120 L L L L

in gas adsorption strength (eg., Tb) Y Eu Tb Tb

Sava Gallis, Vogel, D. J.; Vincent, G.; Rimsza, J. M.; Nenoff, ‘ ) B
T.M. ACS Appl. Mater. Interfaces 2019, 11(46), 43270 Iy .
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Use of DFT modeling to explain optical and electronic uncAse“Mme
responses of NO_adsorption in RE-DOBDC MOF

* Experimental FTIR characterized N-O-DOBDC linkers interactions
* Calculated: NO, adsorption shifts e-density from linkers to adsorbed
NO, molecule, reduces optical transition strength from the linkers;
support exp’s

electronic structure

optical spectra

0.7

" —Activated
—H,0
—NO,

061

o
o
T

o
'y
T

Absorption, a.u.
o
w

B-506nm| Y-DOBDC + H,0, B-528nm

o
)
T

01F

400 450 500 550 600 850
Wavelength, nm

Y-DOBDC + NO,,

Sava Gallis, Vogel, D. J.; Vincent, G.; Rimsza, J. M.; Nenoff,
T.M., ACS Appl. Mater. Interfaces 2019, 11(46), 43270
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Competitive gas adsorption in RE-MOFs
(binary gases: H,0, NO,)

* Where and how do acid gases bind with the RE-MOF framework? 8
* How does competition between acid gases (NO,, H,O) impact - N NOprHO
adsorption ?

D. Jon Vogel

6N02+6H20 |

Methods

* Static and ab initio molecular dynamic (AIMD) periodic density
functional theory (DFT) simulations — dynamically evolving DFT
trajectories

* Combination of mixed gases and elevated, ambient temperatures

Jessica Rimsza

Number of M()F—NO2 Interactions

Results
* Competitive interactions in multicomponent gases inside MOF
pores decrease adsorption
* NO, preferentially binds with the ligands compared with H,O,
forming secondary molecules and nitro/nitrate species

EuTb Y Yb EuTb Y Yb EuTb Y Yb

[mHONO mMetal Einitro Mnitrate]

EuTb Y Yb

Invited: Vogel, Rimsza, Nenoff, Angew. Chemie.
2021, 60, 20, 11514.
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II. RE-DOBDC, Entire Lanthanide Series

Henkelis, et.al., ACS AMI, 2021, 13, 56337

Materials

Susan Henkelis

Lanthanide Contraction

D. Jon Vogel

Bidentate 502 > Hzo > NOZ

Monodentate

Jessica Rimsza

NO,>S0,>H,0
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RE-DOBDC Series: Reactions vary slightly per metal

UNCAGE “° ME

LT

oy
=)

o
a

La-DOBDC example:
LaCl;*7H,0 + dihydroxyterephathlic Acid + DMF

o
o

lonic Radii (pm

o
(&)
1

®  |onic radii of 3+ RE cation
® 2 values for 1st peak in XRD

N
N
1

Dimethylformamide + DMF 125°C, 60 hrs. 1
H,0 + HNO, é ol
rare earth molar ratio S:L:M temp (°C) days in oven U RS R SR S e

Y 1:1.32:19.84 115 3 A - ~— Lu
La 1:1.46:21.86 125 3—6 = ~— . A ™m
Ce 1:2:21.86 125 3 . A A r. Er
Pr 1:1.46:21.86 125 6 e A Ho
Nd 1:1.46:21.86 125 6 { ~ . ~—_ Dy
Sm 1:1.46:21.86 125 3 — A , . Gd
Eu 1:1.46:21.86 115 3 \ , Sm
Gd 1:2:21.86 125 3 | Nd
Tb 1:1.46:21.86 115 3 " , A o
Dy 1:1.46:21.86 125 6 i . B ~ Ce
Ho 1:1.58:7.98 125 3 L A B R La
Er 1:1.58:7.98 125 10 — T T T g — T T T T | — | —
T 12798 125 3 6 9 12 15 18 21 24 27 30
Yb 1:1.58:7.98 115 3 20 (°)
Lu 1:1.58:7.98 125 3

@ENERGY 20 [cowmn o womee (W) ER,. Avwia wreen MvisTeX ] UFiSRiiA



UNCAGE % ME

SEM reveals 4 stages of crystallization in these MOF's

At each stage [M] decreases™,
pointing to ligand incorporation with time

Synthesis \ 1 Nd-DOBDC Er-DOBDC
element weight % phase element weight %
1 Nd 91.93 nodular Er -
O 8.07 O -
9 Nd 87.56 nodular balls Er -
O 12.42 O -
Nd 78.10 aggregates Er -
3 0 21.90 0 -
Nd 77.57 single crystal Er 73.57
4 O 22.43 O 26.43
"" s < > *Exception appears to be Er-DOBDC

i %

o r & b

A"l AM . "
HV det /

mag, WD curr HFW
18.0kV 640 x| 5.0 mm | BSED | 0.37 nA | 469 uym
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Kinetically Controlled Denticity

Bidentate

Short reaction times showed a mixture of Mono- and Bi-
dentate binding of metal cluster (MD/BD-M-DOBDC)

MD/BD@DOBDC Exp N/
MD/BD@DOBDC Calc
BD@DOBDC Calc

——Day 10

Day 3

=

T T T T T T T T T 1
5 5.5 6 6.5 7 7.5 8 8.5 9 95 10

Ll ) . 26 ia
uTtnce oT | Geor RS g naunges %L’ . i
@ ENERGY science M e :-"FTegc'Iz':[ n ’i='»ﬂft/=i£ Sl Nationsl Laborsiory m I.Naia'l-]r;.ran?tll i

.—/'/\/\\\_, o
~———125°C - Day 4

1 L, 3
£ woal W LUNCAGE % ME
;‘?‘" ) ‘é .’""‘". Yo
Ppe ; ‘;'»‘.-g: ;

Jrva!

MD/BD@Eu-DOBDC

HALGHALIK wareoome

™ oy c 9
b . 2 2 . 2
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Binding energies calculated indicating framework

UNCAGE % ME

connectivity defines preferential gas binding

-20

Binding Energy, kJ/mol

-100

-120

" W

(&)

-40

-60 |-

-80

BD@DOBDC MOF:
NO, > S0, >H,0
previously identified secondary H- bond

0 ] interaction, when adsorbed to the
& B 0 ] RE metal center, does not form in the BD-
D DOBDC MOF phase.
OH,0 BD@DOBDC
nNO, BD@DOBDC
(S0, BD@DOBDC
| 1,0 MD/BDE@DOBDC
B A i - i mNO, MD/BD@DOBDC
4SO, MD/BD@DOBDC
® e o o
O O " o @ MD/BD@DOBDC MOF:
; * ] NO, > H,0 > SO,
. G * ¢ Plus, overall increase in binding energies
Ce Sm Eu Tb Er Yb
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II1. Enhanced Framework Stability via Cluster Fluorination

Recently, possible fluorine doping was reported in the metal clusters in Ho-DOBDC MOF (JACS 2021, 143 (43), 17995)

We undertook a computational and experimental study to elucidate if fluorine incorporated into the RE-DOBDC MOFS.
VASP DFT modeling, MOF synthesis and characterization, advanced '°F NMR experiments
Completed for RE-DOBDC, RE-Ui1066, RE(Eu)-TCPB MOFs

How: from the modulators used for crystallization of the MOFs in the reaction synthesis: 2-fluorobenzoic acid (2-fba)  jegsica Rimsza

Materials

g

Matt Christian

Keith Fritzsching

Computationally predicted fully hydroxylated RE-DOBDC MOF
cluster (left) u;—OH and the fully fluorinated version (right) p,;-F
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https://www.google.com/imgres?imgurl=https%3A%2F%2Fpbs.twimg.com%2Fprofile_images%2F936424676863238144%2Fm6DuOMIg_400x400.jpg&imgrefurl=https%3A%2F%2Fmobile.twitter.com%2Fkjfritzsc&tbnid=1ujyCtH_J-XT-M&vet=12ahUKEwjnkoTR-Pf6AhXLwikDHTixBSwQMygAegQIARAk..i&docid=3FLHgQid7JD-3M&w=400&h=400&q=keith%20Fritzsching%20sandia&client=firefox-b-1-e&ved=2ahUKEwjnkoTR-Pf6AhXLwikDHTixBSwQMygAegQIARAk

a) 4.0
Calculated Changes of Fluorine _
incorporation into MOF Structures E
g Eu_ind o EU-Dis - %
12,0 | T80nd = TooDie 1 Yy

Computationally determined.: égiiﬂé - QEZEE - '$
- All RE MOFs evaluated are more stable with the %% 25.0 50.0 750  100.0
incorporation of fluorine . MG e
- Two different fluorine NMR peaks (=63 ppm, —87 ppm). 70 %2525 i~ %:gii -

L 6OF  fend = feDe 2
In table to right, framework topology accommodates the @
incorporation of F into the cluster through slide localized S
crystallographic changes.
(a) Change in formation enthalpy, _ . .

0.0 25.0 50.0 75.0 100.0

(b) % VOlume che.lnge, . Replacement F (%)
(c) absolute sum in lattice angle change per RE atom o) 45 Ve

oy Thoind = ThoDis -

ol 35 Ho-Ind -e- Ho-Dis -0-
RE_DOBDC: % 30 Yb-Ind —— Yb-Dis -A-
Solid lines, —OH replacement on single cluster in the crystal; %
Dashed line, replacement on 2 metal clusters in crystal 2

© ENERGY JMccof |@eorgiainciiuis 3O0AK RIDGE @ Lﬁagt?'ﬁirj'ta(l]ries ALABAMA B9 0.0 25.0 50.0 75.0 100.0TTYA

Replacement F (%)
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F Experiments on Y-DOBDC

* The CODEX experiment demonstrates that >4 fluorine atoms per cluster.
« Signal decays to ~0.2 in 12 ms, corresponding to 4.7 + 0.3 (+10) nearby (~5 A) fluorine spins.

* Y-DOBDC MOF structures have 8 possible fluorine sites, data indicates a fluorination rate of > 50%

a
) mixing time: 30 ps mixing time: 50 ms a)

o
o
|

S(30 ps, Nt)
S(12 ms, Nt)

1
»
o

1

9F (ppm from CFCl,) &
X
o
1

A "6 -0 80 -e0 -0 -80 = === eSS
“F (ppm from CFCL)  *F (ppm from CFCI,) -50 -55 -60 -65 -70 -75 -80 -85
-40 -60 -80 -100 -120 -140 b) | - “F(pEmiom CRCL)
F (ppm from CFCI,) 1.04 4 \ b)
c) — totalfit - 1
-+ peak 1(-64.2 ppm) g e ~08] 1 (1-n) e 8
-+ peak 2 (-69.6 ppm) 506 ] *2* e - + Tcxp = (r)
PR, = ,_,TEO.B'-
R = cross peak -64.2, -69.6 ppm B n=47+03
£0.4+ 4 =041
\ s build up ‘ng 47
S ke = 1 B ]
‘ 0.2 1-exp { (tﬂ) } o 021
............. i ] [ O 1
O e e o o L B ! 0.0 0.0} srssannanssnninsainaisase s R R R
=50 -55 -16;0 -65 -70 -75 -80 -85 6 1'0 2'0 3'0 4'0 5'0 AT SRS AAAS SRS SRS AL
F (ppm from CFCl,) mixing time (ms) t,(ms)
F NMR spectra °F 2D exchange NMR YF CODEX NMR

ENERAY Oficcof | aeor S OAK RIDGE Sandia THE UNIVERSITY OF UNIVERSITY OF UNIVERSITY of
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F-cluster in Y-DOBDC MOFs: no anticipated UNCAGE ¥ME
effect on Acid Gas Binding Energies and MOF Selectivities

*calculated energies, in kJ/Mol

H,O NO, SO,
F OH F OH F
-83 -46 .58 61 .57
-89 -65 67 -66 61
-89 -46 -66 -65 -62
-81 42 -54 -60 -59
Avg 90 +3 86+4 | 50 £10 -61+£6 | 63 £3  -60+2

RE-DOBDC MOFs retain the binding trend of H,O > SO, > NO,

Christian, M. S.; et.al., JACS Au, 2022, 2, 8, 1889
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I'V. Use of DOBDC - based MOFs as direct electrical readout sensors E

Leo Small

= The ability to sense and identify individual gaseous pollutants from the complexity of the environment A
requires highly selective materials Mara Schindelfiolz

Avoidance of interference from real-world air components

Current conductivity-based devices generally fall into two categories: Stephen Perctval

— Solid state — (oxide based) require higher temperatures (>200°C) for interaction of the gas with
the surface oxides; heating devices are needed

— Fuel cell — room temperature liquid electrolyte, easily fouled, short lifetime

= FElectrical metal organic framework (MOF) based sensors have previously been used for direct =3

electrical sensing of gases; however, none for NO, have been reported in open literature Susan Henkelis

* By tuning the composition of MOFs, selective chemical adsorption and/or catalysis can be achieved

= Typical sensors for this application are hard-wired or require frequent battery replacement—
nanoporous MOFs allows for “near-zero” long lived sensing in a wider range of environments


https://www.google.com/imgres?imgurl=https%3A%2F%2Fenergy.sandia.gov%2Fwp-content%2Fuploads%2F2020%2F12%2FPercival_Stephen.png&imgrefurl=https%3A%2F%2Fenergy.sandia.gov%2Fprograms%2Fenergy-storage%2Fstaff%2Fstephen-percival%2F&tbnid=ymXVXBZ7YSNpYM&vet=12ahUKEwjbt66A3oj7AhUORFMKHcnpBBIQMygAegQIARAk..i&docid=_EsNk-oLlX-PrM&w=263&h=297&q=stephen%20percival%20sandia&client=firefox-b-1-e&ved=2ahUKEwjbt66A3oj7AhUORFMKHcnpBBIQMygAegQIARAk
https://www.google.com/imgres?imgurl=https%3A%2F%2Fenergy.sandia.gov%2Fwp-content%2Fuploads%2F2020%2F12%2FSmall_Leo.jpg&imgrefurl=https%3A%2F%2Fenergy.sandia.gov%2Fprograms%2Fenergy-storage%2Fstaff%2Fleo-small%2F&tbnid=7G0YIrOBJgxgwM&vet=12ahUKEwiK3v7Q3Yj7AhX0nWoFHfhBCmQQMygAegQIARBA..i&docid=5rVO3Hw76eE8sM&w=300&h=300&q=leo%20small%20sandia&client=firefox-b-1-e&ved=2ahUKEwiK3v7Q3Yj7AhX0nWoFHfhBCmQQMygAegQIARBA

Direct Electrical Readout Sensors Combined with Nanoporous
* Adsorption Materials

::l blank IDE
=  Composed of Pt interdigitated electrodes (IDEs) with a nanoporous adsorbent layer —
= Nanoporous adsorption materials chosen for ability to selectively adsorb target gas :—. IDE + Ni-MOF-74
molecules
= Electrical readout sensor of this design: -"""——_\/] IDE + Ni-MOF-74
. Exposed to 5ppm NO,
— Decreased power consumption | 8 h50 °C

— Ability to interrogate for specified gases selectively in real-time or as an integrating
sensor for delayed/later testing

= Design of an integrated sensor:

— Record whether any degradation product was ever present during the sensor’s lifetime
= [Integrated sensor is useful in cases where degradation products may:

— Subsequently react with other components,

— Gradually leak out of the system

We have a wide study of sensors for various target gases:

ACS Applied Mater. Interfaces, 2017, 9, 44649 Membranes 2021, 11, 176
Micro. Meso. Mater. 2019, 280, 82 I&ECR 2021, 60, 21, 7998
ACS Applied Mater. Interfaces, 2019, 11, 27982 I&ECR, 2021, 60, 40, 14371

Adv. Func. Mater. 2020, 1407, 2006598 Chem. Soc. Rev. 2022, 51, 324



» INanoporous Materials Targeted for the Selective Adsorption of NO_

Durable nanoporous adsorbents with selectivity for NO, at low temperatures (near ambient)

= Zeolites are aluminosilicates with high temperature durability. Specific metals give rise to NO,
selectivity

= Metal-organic frameworks (MOFs) are metal nodes with organic linkers with selectivity to NO,
designed by incorporating NO, —friendly metals into the framework

Metal-organic framework
M-DOBDC (M =Y, Yb, Eu, Tb)

Zeolite SSZ-13
(CHA)

M-MOF-74 (M = Co, Mg, Ni)
.. «© | DOBDC ligand

M
o” | ™o

M = Co, Ni, Cu,

Small, Schindelholz, Nenoff, Perspective: Zn, Mg, ete.

“Hold on Tight: MOF-Based Irreversible Gas Sensors” I&ECR, 2021, 60, 21, 7998



http://europe.iza-structure.org/IZA-SC/framework_main_image.php?STC=CHA

. M-MOF-74-Based Sensors for the Selective Adsorption of NO,

=  M-MOF-74 (M= Co, Mg, Ni) was targeted for its selectivity to NO,

=  MOF-74 materials were synthesized and investigated as bulk materials and
dropcast onto an interdigitated electrode (IDE)

=  Each powder pattern highlighted two primary diffraction peaks corresponding
to the MOF pore (intensities reduced for dropcast samples, with the large peak
corresponding to the platinum IDE)

26000 A Mg-MOF-74 on |DE pre-NOx
Mg-MOF- 74 24000 1 —Mg-MOF-74 on IDE post-NOx
Co-MOF- 74

Ni-MOF-74 22000 1§

- 1 {
Whens ] | - 4000 4 Glass Pt ||

' \‘-‘” | T -;t.'. . k& A n "_‘ 2000 1
s [ a e gl Tl ot Phe ¥ X i

d Wit St B P e W e e '!q.‘,,_f-"‘.-m"fl.._ﬂ_‘,d-h.‘nl‘.%-ul. rie e ——a - - .
-T—r—r-r-r-—r-—-T-r——TT-Tr-r—T T T T T T T T T T T T T T T T T T T T T T 0 _— e —— e ——— T ——
30 as 40 45 50

10 15 20 25
20 (%)

Powder XRD patterns for as-synthesized MOF-74
in the bulk phase.

260 (°)
Powder XRD patterns for Mg—MOF—’74 dropcast onto IDE pre-NO, (blue)
and post-NO, (orange). Inset: zoomed in region compared to bulk powder
Mg-MOF-74.

Small et al., “Near-Zero Power MOF-Based Sensors for NO, Detection,” Adv. Funct. Mat., 2020, 50, 2006598



_ SEM Characterization of Dropcast M-MOF-74 Films

3

Plan-view SEM micrographs of (A) Co-MOF-
74, (B) Mg-MOF-74, (C) Ni-MOF-74 powders
dropcast onto IDEs. (D) Cross-sectional
micrograph of Ni-MOF-74 film from (C).

= (Co- and N1-MOF-74 contained a wide range of crystallite sizes, from 100’s of
um to 100 nm

= Mg-MOF-74 crystallites were on the order of 100 nm
= Film thickness was ~ 10 um

= Defect-free films are not necessary



. Typical Impedance Responses of M-MOF-74-Based Sensors

Exposed M-MOF-74 (M = Co, Mg, Ni) based sensors to 5 ppm NO, for 8 h at 50°C.

Ni 1012 &
725
100 ¢ ! 10'0}
Co-MOF-74 + gl
® a0 Mg-MOF-74 . =~ 1071
S - . o N
5 Ni-MOF-74 698 ™ 108} % IDE + Ni-MOF-74
o > IDE + Ni-MOF-74 + NO
S 41> ) 2
Q 50 | 10 — fit
3
2 Ni
2 40 33.7
< Mg
2 o 20.2
S 20 |
Co Mg
3.40 2.93
0

1ZI at 100 mHz Ruor (DC) 102 10 102 10 10
: : Frequency / Hz
Ratio of response as-activated to NO,-exposed for (1) q y
impedance magnitude (|Z,.;yaeed/|Znoo|) at 100 mHz Example impedance spectra for

and (2) MOF DC film resistance (R, .,/ Rno2)- Ni1-MOF-74-based sensor



. Impedance Responses as a Function of NO, Concentration

= Blank IDEs and IDEs coated in M-MOF (O e IDE
-74 (M= Co, Mg, Ni) were activated and _ \
exposed to alternating 0.75 h flows of 3 08 /MQ \_4_;
pure N, or N, containing trace NO,, '%I 06}
while impedance was constantly N 04l NO,
measured at 100 mHz -
02 K |
= Magnitude of electrical response is 0 S S~ ___Ni
ordered N1>C0>Mg | 0 N
- Explained by each variant’s NO, o
adsorption capacity and specific E) 230 [
chemical interaction g NO,
= Use of Ni-MOF-74 provided the § 60 /\\__Co
highest sensitivity to NO,, with a 725x < c:u..a/" M Mg
decrease in resistance at 5 ppm NO, [ e e e IDE
and a NO, detection limit <0.5 ppm -90 0 1 2 3 4 5

Time / h



. NO, Selectivity for a Ni-MOF-74-Based Sensor

= A Ni-MOF-74-based sensor was activated and exposed to 5 ppm SO, in N,, and ambient

air (25 °C, 50% RH, 400 pm CO,) heated to 50 °C, and its response compared to previous
exposures to 5 ppm NO, in N,

= An extended air exposure (96 hours) followed by subsequent NO, exposure was also
performed

*= The Ni-MOF-74-based sensor demonstrated selectivity to NO, versus N,, SO,, and air.

A. Ni-MOF-74 B. Ni-MOF-74
1120
1000 + 725 1000
;
3 g
S 100 | X 100 |
i o
~ ~
B 5
% 10 | :g 10 +
G 8
T [ 100 10 0.9 it 1 0.9
N, (8h) 5ppm SO, 5ppmNO, air (8 h) 5ppm NO, air(8h) air(96h) air(96h)+
inN, (8h) inN,(8h) inN, (8 h) 5ppm N02

inN, (8 h)



Enhanced Sensitivity of Nanoporous-Based Sensors
% Using MOF Thin Film Membranes

Mg-MOF-74

= M-MOF-74 (M=Co, Mg, Ni1) MOFs synthesized
as crystalline thin films on functionalized IDEs
* Two step functionalization procedure:

- Reacted IDE with aminosilanes, followed by ring
opening of succinic anhydride

- Functionalization allowed for binding of metal

cation and further growth of 3-D MOF 10°

- w:dnlc:tmk‘: s ':HFIH 0:_uH MC] 1[]_.' | dropﬂast pﬂWdEf J
" U’;hmu, - L 'f w"’wrm = W 1.. E _2 | . .
APTES in ACH $9¢ oob dab nnnlnn?:-_n'-:}'n 10 thin film

= Ni-MOF-74 boasted a continuous thin film and
used in a comparison study vs. a dropcast powder

" Thin film passed a modified ASTM D3359 test
for durability

" Thin film membranes resulted in an increased
response rate and larger total change in impedance

Phase Angle / °

01 2 3 4 5 6 7 8
N*.'Z:r2 Exposure Time / h
Henkelis, et al., “Continuous MOF Membrane-Based Sensors via Functionalization of Interdigitated Electrodes”, INVITED: Membranes 2021, 11, 176
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Custom- built NO, exposure
chamber enabled Zeolite, MOF
activation and subsequent 1n situ
electrical testing under varying
NO, concentrations without
exposure to lab atmospheres

Variable NO, concentrations (0.5
-5 ppm) were achieved by
diluting 5 ppm NO, gas stream
with pure UHP N, at 500 sccm

total gas flow

Impedance spectra recorded at 0
V DC and 100 mV (RMS) AC
over | MHz - 10 mHz

All electrical measurements and
NO, exposures occurred at 50°C

NO, Exposure and In Situ Electrical Testing

A. ﬂ blank IDE
L] |
=3 IDE + Ni-MOF-74

C.

—@

IDE + Ni-MOF-74
Exposed to 5ppm NO,
8 h50 °C



Custom Test Fixtures for Multiple & Simultaneous Long-Term Exp

38

and Electrical Testing

Gold-plated spring-loaded pins

Aluminum screws

* Custom designed test fixtures (‘MOF
Motel’) for long-term exposures and in-
situ electrical testing of sensors

e 24 test cells, each cell 70 mL

* Humidity/NO, levels controlled in each
chamber with constant temperature
across entire test fixture

Gas Flow Design for MOF Motel P e

3as Exhaust into fume haod

PE—
split off ta ather motel "floars” +—————

RFO
Tubing is 1/8” OD PTFE l

manual flowmeter

®
@

®
@

Block of & cells

|

bubble through H.O

|

RH and NO, sensar

AL 1 gas earhange par howr, 1 Iull NO, lank will [asL 4
rnonths if all 24 chambers running. & scerm per “floar”

Percival, S.J., et.al., I& ECR 2022, submitted.



RE-DOBDC MOF: UNCAGE ¥ME
Conclusions, Highlights and Future Research

We have successfully established
Structural stability of Sandia RE-DOBDC MOFs to NO, & SO, acid gas and humidity, RE: Y, Eu, Tb, Yb
The ability to retain the coordination geometry (cluster) across of series of rare earth elements
This control of the building block is rare in MOFs in a series

Use of modeling and experiment confirmed Fluorine incorporation into RE-DOBDC, RE-Ui1066, and RE-TCPB MOFS
Use of modulator in crystallization reaction is the source, 2-fluorobenzoic acid (2-fba)
No anticipated affects on binding preference to the metal by various acid gases, due to shielding of the F by the metals

Application use established for industrial and automotive caustic gas detectors, highly tunable and selective for gases of interest even
with competing air gases

Future / On-going Research:

Accelerate Materials Discovery: Design next generation caustic gas stable adsorbents (MOFs and Zeolites) from DFT/AIMD
modeling predictions with associated synthesis, characterization and testing

Transitioning into the computational design and synthesis of porous liquids and carbons for enhanced greenhouse gas selectivity

4 . U.S. DEPARTMENT OF Office of | g = S OAK RIDGE Sandia THE UNIVERSITY OF UNIVERSITY OF UNIVERSITY of
L EN ERGY Science ‘ e%"égclla‘. HleEs %.\'Mion:\l Laboratory m lNaal?Uc:ﬁtllries ALABAMA @ LEHIGH MICHIGAN W UF FLORIDA
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IV. Use of DOBDC — based MOFs as direct electrical readout sensors

Leo Small

We have successfully used DOBDC based highly :. Blank IDE g
tuned gas sensors, useful in complex gas streams - Mara Schindefholz
ﬂ Dropcast powder

Stephen Percival

o

o, O Matthew Hurlock
™

o” | Mo
(o]

M = Co, Ni, Cu,
Zn, Mg, etc.

Susan Henkelis

One example:
M-MOF-74; M = Ni, Co, Mg

Gas binding inside the MOF . — glass
and charge transfer enables the 9
sensor response
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MOFs provide the selectivity to the target gas to be detected

Judicious choice of MOF or Zeolite for gas of interest. Thin film fabricated on interdigitated electrode (IDE).
M-MOF-74 membranes fabricated by two methods:
10°
(1) Dropcasting solutions (2) Surface crystallization
o 107"} dropcast powder ;
N
N o o _
10 thin film MOF/IDE direct electrical
Impedance response of
T A — drop cast MOF film (blue)
-o————— vs. crystallized thin film
. (red) MOF.
= 30} 1 Faster kinetics and
< response from the thinner
i F o) thin film version.
% A i e i - » -60 i
b ,I‘_:__{'H::&.',...__ ©
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APTES in ACN N S S S -

o Glass — Si0, Henkelis, et.al, Membranes, 2021, 11, 176.




NO, Selective
M-MOF based Sensor

Small changes in MOF lead to
very large electrical response
changes in the sensor

100 ¢

Ratio Activated / NO, loaded

A. Ni-MOF-74
1000 | 725
kS
3
< 100 G
<))
o
S~
2 10t}
©
=
g
cC 1 1.00 1.01 0.99
N, (8h) 5ppm SO, 5ppm NO, air (8 h)
inN, (8h) inN,(8h)

80 }

60 }

Ni
725
Co-MOF-74 S
Mg-MOF-74
Ni-MOF-74 Co

63.8

Co Mg
3.40 2.93

Small, L.J.; et.al., Adv. Func. Mater. 2020, 1407, 2006598.
Henkelis, S.E., et.al., Membranes 2021, 11, 176.

Small, L.J. et.al., I&ECR 2021, 60, 21, 7998

Percival, S.J., et.al., I& ECR 2022, submitted.

Ratio of response from activated to NO,-exposed:

(1) impedance magnitude at 100 mHz, and
(2) MOF DC film resistance for IDEs coated with M-
MOF-74 (M = Co, Mg, Ni).

NO, exposure was at 5 ppm NO, for 8h at 50 °C.

IZl at 100 mHz Ryor (DC)
B. Ni-MOF-74
Ratio of Ni-MOF-74 resistance (R,,,r)
1000 | 725 1120 when exposed to different

= environments at 50°C

[}

é * highly selective response towards NO,.
Cé'g 100 r (A) 8 h exposures and (B) comparison of
~ 16.8 response of extended air-exposure

g | oL combined with subsequent NO,

g exposure.

[&]

Im ] 0.99 * “Air” is ambient atmosphere (25 °C
0 0
5ppmNO, ar(8h) air(@eh) ar(@sh + -0’0 R, 402 ppm CO,, 21% O,), then
in N, (8 h) 5 ppm NO, heated to 50 °C.

in N, (8 h)



Sandia Truman Fellowship FY24

Seeking Applicants!
Sandia National Laboratories is seeking applicants for the President Harry S. Truman Fellowship
(in National Security Science and Engineering).

Candidates for this position are expected to have solved a major scientific or engineering problem in their
thesis work or have provided a new approach or insight to a major problem, as evidenced by a recognized
impact in their field

The Fellowship provides the opportunity for new Ph.D. scientists and engineers to pursue independent
research of their own choosing that supports Sandia’s national security mission.

The appointee is expected to foster creativity and to stimulate exploration of forefront S&T and high-risk,
potentially high-value research and development.

Sandia’s research focus areas are: bioscience, computing and information science, engineering science,
materials science, nanodevices and microsystems, radiation effects and high energy density physics,
and geosciences.

The Truman Fellowship is a three-year appointment. The salary is $111,200 plus benefits and research funding
for the proposal.

Requirements:
Candidates must meet the following requirements:

* Ph.D. awarded within the past three years at the time of application or
completed Ph.D. requirements; with strong academic achievement

and evidence of exceptional technical accomplishment, leadership, and
ability to team effectively

* Candidates must be seeking their first national laboratory appointment
(no previous postdoc at a national laboratory)

* Ability to obtain a DOE “Q” clearance, which requires US citizenship
Visit
www.sandia.gov
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Jill Hruby Fellowship FY24

Seeking Applicants!
Sandia National Laboratories is seeking applicants for the Jill Hruby Fellowship
in National Security Science and Engineering.

This fellowship aims to develop women in the engineering and science fields who are interested
in technical leadership careers in national security.

Applicants must display excellent abilities in scientific and/or engineering research and show
clear promise of becoming outstanding leaders.

Jill Hruby Fellows have the opportunity to pursue independent research that supports Sandia’s
purpose: to develop advanced technologies to ensure global peace. In addition to receiving
technical mentorship, Jill Hruby Fellows participate in a unique, prestigious leadership
development program.

Sandia’s research focus areas are: bioscience, computing and information science, engineering
science, materials science, nanodevices and microsystems, radiation effects and high energy

density physics, and geosciences.

The Jill Hruby Fellowship is a three-year appointment. The salary is $111,200 plus benefits.
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Sandia
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Requirements:
Candidates must meet the following requirements:

* Ph.D. awarded within the past three years at the time of application or completed Ph.D.
requirements; with strong academic achievement and evidence of exceptional technical
accomplishment, leadership, and ability to team effectively

+ Candidates must be seeking their first national laboratory appointment (no previous postdoc
at a national laboratory)

* Ability to obtain a DOE security clearance, which requires US citizenship
Visit
www.sandia.gov
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