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§ For some flyers and wire vaporization experiments (e.g. Sandia’s Z Machine) 
the expanding material enters the liquid-vapor coexistence region

§ Most continuum hydrodynamics codes use equilibrium equations of state: 
assumes phase transformation kinetics are short compared to the dynamics of 
the simulation

§ However, if liquid-vapor transformation kinetics are long compared to the 
simulation dynamics, then once material enters these two-phase regions, the 
simulation is no longer valid

Introduction
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Why Atomistic?
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§ Atomistic simulations (e.g. molecular dynamics) avoid explicit 
assumptions about the material behavior in the liquid-vapor 
coexistence region

§ Accurately capture droplet formation, coalescence, break-up, 
surface tension, heat transfer, etc., without approximations 
commonly required for continuum models

§ The goal of this work is to help provide a basis for two-phase 
equations-of-state models in hydrocode simulations of free 
expansion (e.g. exploding wires)

§ Disadvantages of MD over continuum models: computationally 
expensive, smaller length and time scales (but gap can be partially 
closed with large supercomputers)



Molecular Dynamics: What is it?

Mathematical Formulation
§Classical Mechanics
§Atoms are Point Masses: r1, r2, ..... rN
§Positions, Velocities, Forces: ri, vi, Fi
§Potential Energy Function = V(rN)
§6N coupled ODEs
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MD Versatility

Chemistry

Materials 
Science: 
metals, 

polymers, 
etc.

Biophysics

Granular 
Flow

Coupling to 
Solid 

Mechanics

5



MD Time & Length Scales
§ Quantum mechanical electronic 

structure calculations (QM) provide 
accurate description of mechanical and 
chemical changes on the atom-scale, 
but limited to ~1000 atoms

§ Atom-scale phenomena drive a lot of 
interesting physics, chemistry, 
materials science, mechanics, 
biology…but it usually plays out on a 
much larger scale

§ Mesoscale: much bigger than an atom, 
much smaller than a glass of soda

§ QM and continuum/mesoscale models 
(CM) can not be directly compared—
large scale MD can bridge gap
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LAMMPS Code Overview

§ Large-scale Atomic/Molecular Massively Parallel Simulator
§ https://lammps.org

§ Open source, C++ code
§ Bio, materials, mesoscale

§ Particle simulator at varying length and time scales
§ Electrons à atomistic à coarse-grained à continuum

§ Spatial-decomposition of simulation domain for parallelism
§ Energy minimization, dynamics, non-equilibrium MD
§ GPU and OpenMP enhanced, Kokkos enabled
§ Can be coupled to other scales: QM, kMC, FE, CFD, …
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§ Quantum chemistry: solves Schrödinger equation (electron 
interactions) to get forces on atoms. Accurate but very 
computationally expensive and only feasible for small systems: 
~1000 atoms

§ Molecular dynamics: uses empirical force fields, sometimes fit to 
quantum data. Not as accurate but much faster

§ MD typically only considers pair-wise or three-body interactions, 
scales as O(N) (billion atom simulations are considered huge)
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SNAP Training Workflow

Model Form

Regression Method

• Energy of atom 𝑖 expressed as a basis expansion 
over K components of the bispectrum (𝐵!" )

• β vector fully describes a SNAP potential
• Decouples MD speed from training set size
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SNAP Bispectrum Components

§ Neighbors of each atom are mapped onto unit sphere in 4D

3𝐷 𝐵𝑎𝑙𝑙: 𝑟, 𝜃, 𝜙 , 𝑟 < 𝑅#$% ⟹ 4𝐷 𝑆𝑝ℎ𝑒𝑟𝑒: (𝜃&, 𝜃, 𝜙), 𝜃& =
𝑟

𝑅#$%
𝜋

§ Expand density around each atom in a basis of 4D 

hyperspherical harmonics, 

§ Bispectrum components of the 4D hyperspherical harmonic 

expansion are used as the geometric descriptors of the local 

environment
• Preserves universal physical symmetries
• Rotation, translation, permutation

• Size-consistent (extensible)

It is advantageous to use most of the 3-sphere, while still excluding the
region near the south pole where the configurational space becomes highly
compressed.

The natural basis for functions on the 3-sphere is formed by the 4D hy-
perspherical harmonics U j

m,m0(✓0, ✓,�), defined for j = 0, 12 , 1, . . . and m,m0 =
�j,�j+1, . . . , j�1, j [9]. These functions also happen to be the elements of
the unitary transformation matrices for spherical harmonics under rotation
by angle 2✓0 about the axis defined by (✓,�). When the rotation is parame-
terized in terms of the three Euler angles, these functions are better known
as Dj

m,m0(↵, �, �), the Wigner D-functions, which form the representations of
the SO(3) rotational group [10, 9]. Dropping the atom index i, the neighbor
density function can be expanded in the U j

m,m0 functions
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where the expansion coe�cients are given by the inner product of the
neighbor density with the basis function. Because the neighbor density is a
weighted sum of �-functions, each expansion coe�cient can be written as a
sum over discrete values of the corresponding basis function,

uj
m,m0 = U j

m,m0(0, 0, 0) +
X

rii0<Rcut

fc(rii0)wiU
j
m,m0(✓0, ✓,�) (4)

The expansion coe�cients uj
m,m0 are complex-valued and they are not

directly useful as descriptors, because they are not invariant under rotation
of the polar coordinate frame. However, the following scalar triple products
of expansion coe�cients can be shown to be real-valued and invariant under
rotation [7].
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The constantsH
jmm0
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0
1

j2m2m
0
2

are coupling coe�cients, analogous to the Clebsch-

Gordan coe�cients for rotations on the 2-sphere. These invariants are the
components of the bispectrum. They characterize the strength of density
correlations at three points on the 3-sphere. The lowest-order components
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I. INTRODUCTION

We have previously6 identified indium phosphide as a candidate material for SNAP potential development. A two element
system like indium phosphide would be a good candidate for testing the ability of SNAP to differentiate between different atomic
species. Indium phosphide is a III-V semiconductor and has a wide variety of technology applications. The main goal for this
potential is to accurately represent collison cascades from radiation damage. The difficulty lies in reproducing defects that will
occur during the collison cascade, which are high energy, non-symmetric configurations. Previous attempts at developing such a
potential yielded modest results. Many of the bulk InP properties were well reproduced but defect formation energies for relevant
defect structures were inconsistent with DFT results. Formation energies were off by up to 1.5 eV even after optimization of
SNAP parameters. Some defect structures minimized to different configurations which were distinctly different from the DFT
results. This allowed the minimum energy to drop, resulting in the different formation energies between SNAP and DFT. Defect
formation energies are one of the most important properties for a potential to replicate when studying radiation damage events
and the previously produced potentials would not be well suited for this physics. However, the new SNAP alloy methodology
should be better able to describe the differences in atomic species and distinguish between different local environments for the
disordered systems occuring during collison events. In this work, we describe the new SNAP alloy formulation and present
preliminary results for a new indium phosphide potential for studying radiation damage events.

II. MATHEMATICAL FORMULATION

A. Explicit Multi-Element Bispectrum Descriptors

In the original SNAP formulation, the total density of neighbor atoms around a central atom i located at the origin was
considered as a sum of �-functions in a three-dimensional space:

⇢i(r) = �(0) +
X

ri0<Rcut

fc(ri0)wi0�(ri0) (1)

where ri0 is the position of the neighbor atom i
0 relative to the central atom. The wi0 coefficients are dimensionless weights

that are chosen to distinguish different atomic elements, while the central atom is arbitrarily assigned a unit weight. The sum is
over all atoms i0 within some cutoff distance Rcut. The switching function fc(r) ensures that the contribution of each neighbor
atom goes smoothly to zero at Rcut. Following Bartók et al. 8, the radial distance r is mapped to a third polar angle ✓0 defined
by,

✓0 = ✓
max
0

r

Rcut
(2)

The additional angle ✓0 allows the set of points (✓,�, r) in the 3D ball of possible neighbor positions to be mapped on to the
set of points (✓,�, ✓0) on the unit 3-sphere. Dropping the atom index i, the neighbor density function can be expanded in the
basis of 4D hypershperical harmonic functions U j

m,m0

⇢(r) =
1X

j=0, 12 ,...

jX

m=�j

jX

m0=�j

u
j
m,m0U

j
m,m0(✓0, ✓,�) (3)

where the expansion coefficients are given by the inner product of the neighbor density with the basis function. Because the
neighbor density is a weighted sum of �-functions, each expansion coefficient can be written as a sum over discrete values of the
corresponding basis function,

u
j
m,m0 = U

j
m,m0(0, 0, 0) +

X

rii0<Rcut

fc(rii0)w
0
iU

j
m,m0(✓0, ✓,�) (4)

The expansion coefficients u
j
m,m0 are complex-valued and they are not directly useful as descriptors, because they are not

invariant under rotation of the polar coordinate frame. However, the following scalar triple products of expansion coefficients
can be shown to be real-valued and invariant under rotation? .
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• Deeply nested loops

• Loop structure not regular

• Loop sizes <= 14



Team for LAMMPS/SNAP GPU Optimizations
§ Stan Moore (SNL): LAMMPS Kokkos lead developer, lynchpin for 

integrating Kokkos improvements into public LAMMPS (ported and 
reviewed code), benchmarked LAMMPS on pre-exascale testbeds

§ Aidan Thompson (SNL), Nick Lubbers (LANL): algorithm redesign
§ Evan Weinberg (NVIDIA): Major performance improvements on GPUs
§ Rahul Gayatri (NERSC) and Neil Mehta (NERSC): performance 

improvements, support for TestSNAP and LAMMPS on pre-exascale
testbeds, developing Kokkos OpenMPTarget backend

§ Nick Curtis (AMD): Profiling SNAP on MI250X, Kokkos HIP backend 
improvements, investigating SNAP performance

§ Chris Knight (ALCF) and Yasi Ghadar (ALCF): support for TestSNAP and 
LAMMPS on pre-Aurora testbeds

§ Daniel Arndt (ORNL): developing Kokkos SYCL backend, helped tune 
TestSNAP performance on Arcticus
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SNAP Improvements
§ Adjoint refactor: algorithmic redesign that reduced the computational complexity and 

memory footprint by large factor
§ Flattened jagged multi-dimensional arrays: reduced memory use
§ Major kernel refactor: Broke one large kernel into many smaller kernels, reordered loop 

structure
§ Changed the memory data layout of an array between kernels via transpose operations
§ Refactored loop indices and data structures to use complex numbers and multi-dimensional 

arrays instead of arrays of structs
§ Refactored some kernels to avoid thread atomics and use of global memory
§ Judiciously used Kokkos hierarchical parallelism and GPU shared memory
§ Fused a few selected kernels, which helped eliminate intermediate data structures and 

reduced memory use
§ Added an AoSoA memory data layout inspired by Cabana code, which enforced perfect 

coalescing and load balancing in one of the kernels
§ Symmetrized data layouts of certain matrices, which reduced memory overhead and use of 

thread atomics on GPUs (also improved CPU performance)
§ Large refactor of Wigner matrices + derivatives to use AoSoA data layout
§ Pack several 32-bit integers for Clebsch-Gordon coefficient lookup tables into 128-bit int4 

structs and use 128-bit load/store to reduce memory transactions

12



SNAP Performance on V100
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§ Over 30x speedup since 2018!

§ A few additional % speedup from recent improvement not shown

better



2021 ACM Gordon-Bell Award Finalist

§ “Billion atom molecular dynamics 
simulations of carbon at extreme 
conditions and experimental time 
and length scales”

§ SNAP model of carbon
§ Team members from Sandia, U of S. 

Florida, NVIDIA, NERSC, and KTH
§ Ran SNAP carbon model on full OLCF 

Summit (27,900 GPUs)
§ Achieved 50.0 PFLOPs: 24.9% of 

Summit theoretical peak, 33.6% of 
measured LINPACK benchmark

§ SNAP MD simulation rate 22.9x 
higher than DeepMD (2020 Gordon-
Bell award for quantum-accurate 
MD)

14
K. N. Cong, J. T. Willman, S. G. Moore, A. B. Belonoshko, R. Gayatri, E. Weinberg, M. A. Wood, A. P. Thompson, I. I. Oleynik, In Proceedings 
of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '21), Article 4, 1–12, 2022.



Benchmarked up to 20 billion atoms (amorphous carbon sample)

OLCF Summit Scaling Results

15

weak scalingstrong scaling

K. N. Cong, J. T. Willman, S. G. Moore, A. B. Belonoshko, R. Gayatri, E. Weinberg, M. A. Wood, A. P. Thompson, I. I. Oleynik, In Proceedings 
of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '21), Article 4, 1–12, 2022.



NNSA’s ATS-2 Sierra Supercomputer
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§ Hardware similar to OLCF Summit, but fewer GPUs per node
§ 4320 nodes, 4 V100-16GB GPUs per node, IBM Power 9 CPUs
§ At one point was #3 on the TOP500 supercomputer list, now #6 (as 

of November 2022)
§ Located at Lawrence Livermore National Laboratory in California



Problem: Free Expansion

17

§ Supercritical fluid expands into vacuum
§ Supercritical means the material is so hot that there is no longer a 

clear distinction between the liquid and vapor phases
§ When the supercritical fluid expands, the temperature drops below 

the critical temperature, and the fluid rapidly phase-separates into 
liquid droplets and vapor bubbles

§ Rarefaction wave travels in opposite direction of expansion, limits 
maximum timescale of simulation

expansion, coolingrarefaction 



Early Work: Lennard-Jones
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§ The Lennard-Jones (LJ) interatomic potential is a simple empirical model 
that still captures many relevant physics phenomena of materials (~argon)

§ LJ enables rapid throughput with large atom counts
§ Investigated free expansion by running up to ~24 billion atoms on 8192 

GPUs on Sierra
§ LJ is computationally very cheap: simulation size is limited by GPU 

memory on Sierra
§ However, need a realistic model for metal: develop SNAP machine 

learning potential for aluminum
§ SNAP model much more expensive: simulation size is limited more by 

time stepping throughput (i.e. number of compute days allocated on full 
machine)



Training the Al SNAP Model
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§ Density function theory (DFT) used as “ground truth” training data
§ Normand Modine (SNL) generated DFT data using VASP code
§ Training set included ~800,000 configurations!
§ Bulk Al structures at a range of densities and temperatures (1.2–3.0 

g/cc, 933–10,000 K)
§ Freely expanding Al slabs at the same range of temperatures
§ Ember Sikorski (SNL) optimized SNAP hyperparameters and 

generated model candidates using DAKOTA and FitSNAP



Evaluating Model Candidates
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§ Multiple SNAP model candidates were generated 
§ Candidates were evaluated by running small (~30k atom) simulations at different 

temperatures to map out the liquid-vapor coexistence region
§ Critical temperatures and densities were fit using the universal Ising critical 

exponent β ≈ 0.326 and law of rectilinear diameter
§ The predicted critical point was compared to values from experiment and theory
§ One of the best candidates was then selected to run at large scale on Sierra



Aluminum Free Expansion
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§ ~1.5 billion atoms on 8192 GPUs (2048 nodes, ~47% of full Sierra), 
using KOKKOS package in LAMMPS

§ Simulation is 1.773 micrometers long in the x-dimension, 8x smaller 
in the y-z dimensions

§ Infinite periodic boundary conditions in y-z as well
§ Simulation starts at a temperature of 9000 K and a density of 1.5 

gm/cc (aluminum Tc ≈ 6500 K)
§ Supercritical fluid initially fills half the cell (~0.9 micron long) and 

then expands out
§ 1 femtosecond timestep, ran for 0.56 nanoseconds total physical 

time
1.773 micrometers



Simulation Visualization
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§ Particle size is rendered proportional to local density: effectively 
removes the vapor phase and leaves only liquid droplets

§ Coloring: green = supercritical fluid, blue = subcritical liquid 
(approximate) 



Visualization with OVITO
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OVITO Advantages
§ Domain specific: highly optimized for particle simulations, has 

direct support for LAMMPS dump files
§ Produces high quality visualizations with ray tracing, ambient 

occlusion, etc.
§ Highly scriptable with Python and useful for data post-processing 

and analysis in general (in addition to rendering images)
OVITO Disadvantages
§ Only runs on a single node with multithreading and shared 

memory, no MPI parallelization
§ Can only visualize up to ~2 billion particles at a time (assuming 

unlimited memory)



OVITO Parallelism Workaround
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§ LAMMPS reshuffles atom data between ranks so each rank has a “slice” of 
the simulation data in the x-direction

§ Each rank outputs to a separate file (e.g. 8192 files total)
§ MPI driver program launches separate instances of OVITO on many nodes
§ Each OVITO instance loads atom data from “owned” slices, along with 

neighboring “ghost” slice data to create a buffer zone to reduce visual 
edge artifacts



OVITO Parallelism Workaround (cont.)
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§ OVITO renders an image of the slice, including buffer zone, thenthe
buffer region is cropped off

§ Another MPI driver program stiches all the small slice images 
together in parallel to create a single large composite image



OVITO Parallelism Workaround (cont.)
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Advantages:
§ Highly scalable: large images are rendered in an (almost) 

embarrassingly parallel manner
§ Can render more than 2 billion atoms
Disadvantages:
§ Minor artifacts in lighting/shadows, but overall produces nice, 

usable images in parallel
§ Can only visualize a single face straight on (so everything lines up), 

no 3D perspective views

§ Would like to also try Paraview in the future (less domain specific, 
but MPI-enabled so requires less workarounds)



Free Expansion: Next Steps
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§ Performed some data analysis of earlier LJ simulations, but need to 
analyze new data from SNAP runs

§ Investigate how well each slice in the simulation matches the phase 
fractions predicted from the equilibrium liquid-vapor tie line

§ Can also analyze droplet size and growth rate, etc.
§ Also started running a 4x longer simulation with SNAP aluminum = 

~6 billion atoms: allows for a longer timescale before the 
rarefaction wave reaches the front edge of the box



Towards Exascale
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§ Ran older versions of SNAP on OLCF Crusher MI250X: NVIDIA 
improvements also helped MI250X (V100 was an excellent proxy for 
MI250X)

§ ~25x performance improvement comparing original vs latest code for 
both V100 and MI250X (see inset), different benchmark than earlier slide

§ Additional few % improvement using latest Kokkos, ROCm, and LAMMPS 
on MI250X beyond latest data point on plot

Measured 
MI250X/V100 
FLOP ratio = 
~2.4x, but 
performance is 
only 0.7x, so we 
lost 3.4x, why?



SNAP Kernels and Limiters
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V100:
§ ComputeYi: 66% of runtime, L1 cache bandwidth bound
§ ComputeFusedDeidrj: 27% of runtime, FP64 compute bound
§ ComputeUi: 3% of runtime, FP64 atomic-add bound

MI250X:
§ ComputeYi: 63% of runtime, currently VALU (int32) bound
§ ComputeFusedDeidrj: 29% of runtime
§ ComputeUi: 5% of runtime



INT32 Throughput Issue
§ Nick Curtis (AMD) profiled ComputeYi (largest kernel in SNAP): 90% 

VALU int32 bound on MI250X, only waiting on memory 10% of the 
time

§ Kokkos SNAP uses up to 4D arrays in deeply nested loops: large 
int32 computation to index Kokkos views

§ ROCm 5.3.0 has improvement to AMD compiler to generate IMAD 
(integer fused multiply/add) operations1, but no improvement in 
practice for SNAP

§ Another compiler optimization in ROCm 5.4.0 is expected to help 
Kokkos MDRangePolicy (potential speedup unknown)

§ V100 has independent parallel integer and floating-point data 
paths, so the Volta SM is efficient on workloads with a mix of 
computation and addressing calculations2
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[1] https://reviews.llvm.org/D127253
[2] https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf, page 7

https://asc.llnl.gov/coral-2-benchmarks
https://reviews.llvm.org/D127253
https://asc.llnl.gov/coral-2-benchmarks
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf


Frontier L1 Cache Size
AMD MI250X GPU (one die): 
§ 24 FP64 TFLOPS peak theoretical1, 18.3 FP64 TFLOPS 

measured with Kokkos Bytes & FLOPS benchmark, i.e. with 
limited power and cooling, using AMD internal optimizations 
for Kokkos2, 18.9 TFLOPS for raw HIP with same benchmark

§ L1-cache/SM = 16 KB (fixed)
NVIDIA V100 GPU:
§ 7.8 FP64 TFLOPS peak theoretical, 7.8 FP64 TFLOPS measured 

L1-cache/SM = 96 KB (typical but can be changed)

§ ComputeYi L1 cache hit rate: ~60% on MI250X, ~90% on V100
§ V100 performance highly sensitive to reducing L1 cache size 

(i.e. using cudaFuncCachePreferShared instead of PreferL1)

31
[1] https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
[2] https://github.com/kokkos/kokkos/pull/4755, AMD is working through how to implement these optimizations in public Kokkos

https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://github.com/kokkos/kokkos/pull/4755


Conclusions
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§ Atomistic simulations can generate unprecedented insight into 
phase change kinetics and fluid microstructure evolution during 
free expansion

§ Provide a basis for improving two-phase equation-of-state models 
in hydrocode simulations 

§ Machine learning is a powerful tool but still requires humans in 
the loop to evaluate model candidates and interpret the results

§ SNAP machine learning potential in LAMMPS is highly optimized 
for NVIDIA GPUs

§ Need more profiling to better understand and potentially mitigate 
AMD MPI250X performance bottlenecks (L1 cache size and int32 
throughput) for OLCF Frontier exascale supercomputer



Thank you
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Questions?


