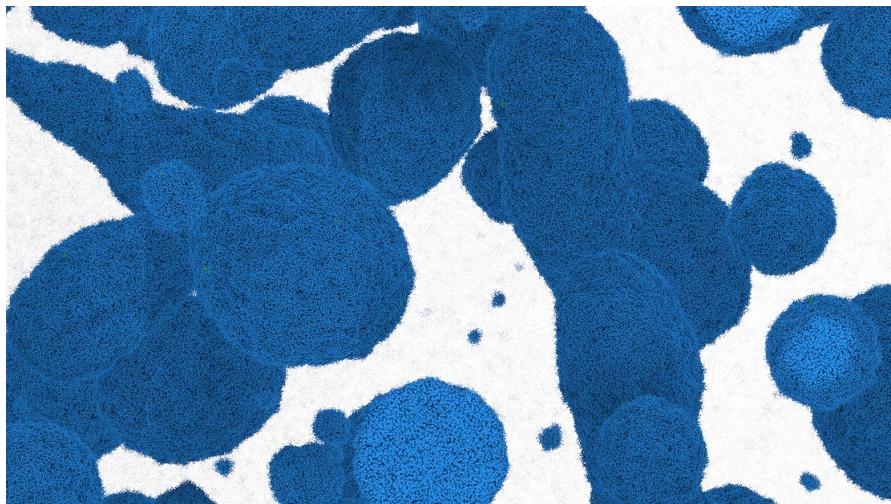


Exceptional service in the national interest



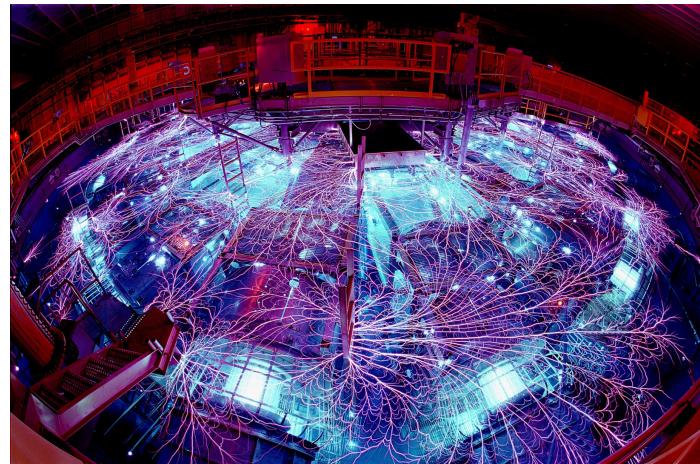
Large-Scale Atomistic Simulations of Molten Metal Expansion

Stan Moore, Mitchell Wood,
Kyle Cochrane, Aidan Thompson
Sandia National Laboratories
SC22 Conference

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Introduction

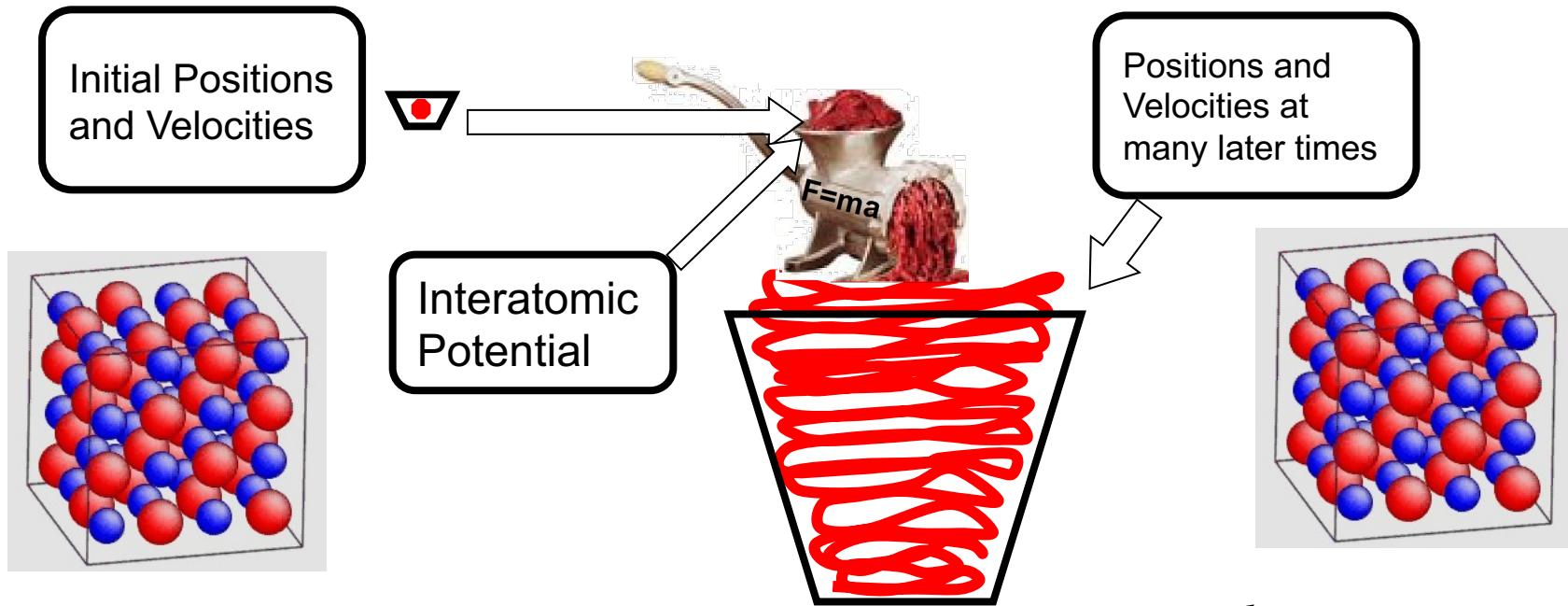
- For some flyers and wire vaporization experiments (e.g. Sandia's Z Machine) the expanding material enters the **liquid-vapor coexistence region**
- Most continuum hydrodynamics codes use **equilibrium equations of state**: assumes phase transformation kinetics are short compared to the dynamics of the simulation
- However, if **liquid-vapor transformation kinetics are long** compared to the simulation dynamics, then once material enters these two-phase regions, the simulation is **no longer valid**



Why Atomistic?

- Atomistic simulations (e.g. molecular dynamics) avoid **explicit assumptions** about the material behavior in the liquid-vapor coexistence region
- Accurately capture droplet formation, coalescence, break-up, surface tension, heat transfer, etc., **without approximations** commonly required for continuum models
- The goal of this work is to help **provide a basis for two-phase equations-of-state models in hydrocode simulations** of free expansion (e.g. exploding wires)
- Disadvantages of MD over continuum models: **computationally expensive, smaller length and time scales** (but gap can be partially closed with large supercomputers)

Molecular Dynamics: What is it?



Mathematical Formulation

- Classical Mechanics
- Atoms are Point Masses: r_1, r_2, \dots, r_N
- Positions, Velocities, Forces: r_i, v_i, F_i
- Potential Energy Function = $V(r^N)$
- $6N$ coupled ODEs

Newton's Equations:

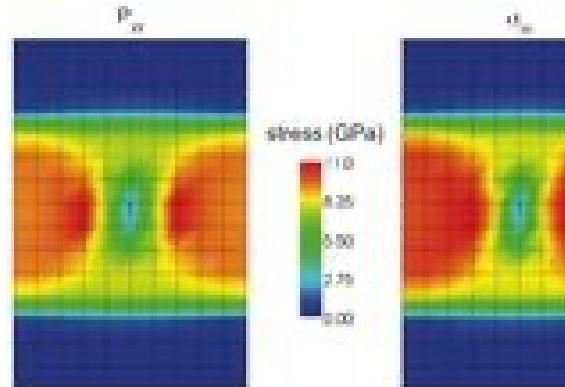
$$\frac{d\mathbf{r}_i}{dt} = \mathbf{v}_i$$

$$\frac{d\mathbf{v}_i}{dt} = \frac{\mathbf{F}_i}{m_i}$$

$$\mathbf{F}_i = -\frac{d}{d\mathbf{r}_i} V(\mathbf{r}^N)$$

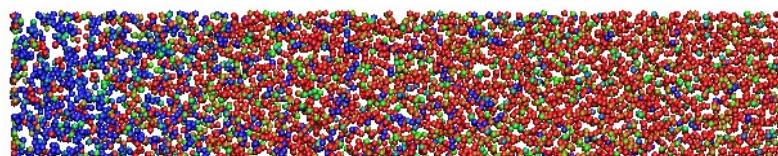
MD Versatility

**Coupling to
Solid
Mechanics**

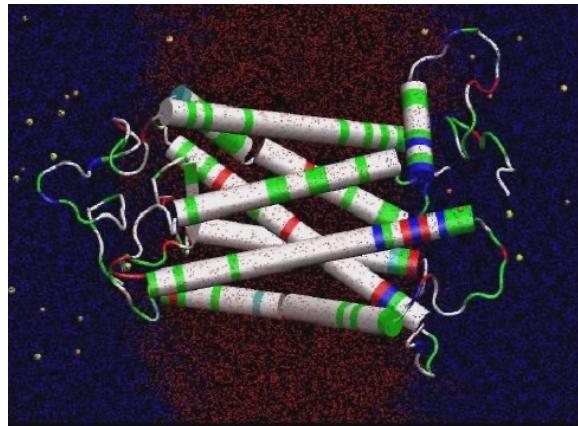


**Materials
Science:
metals,
polymers,
etc.**

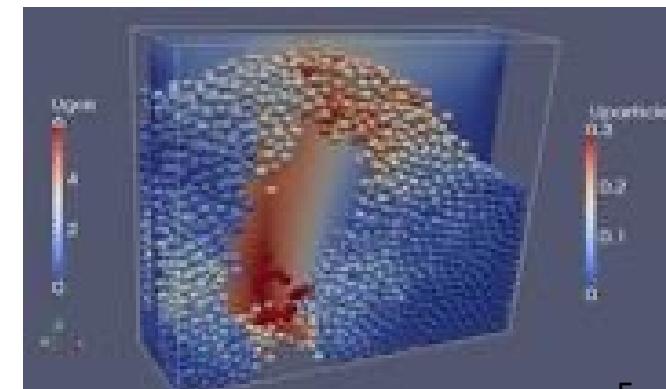
Biophysics



Chemistry

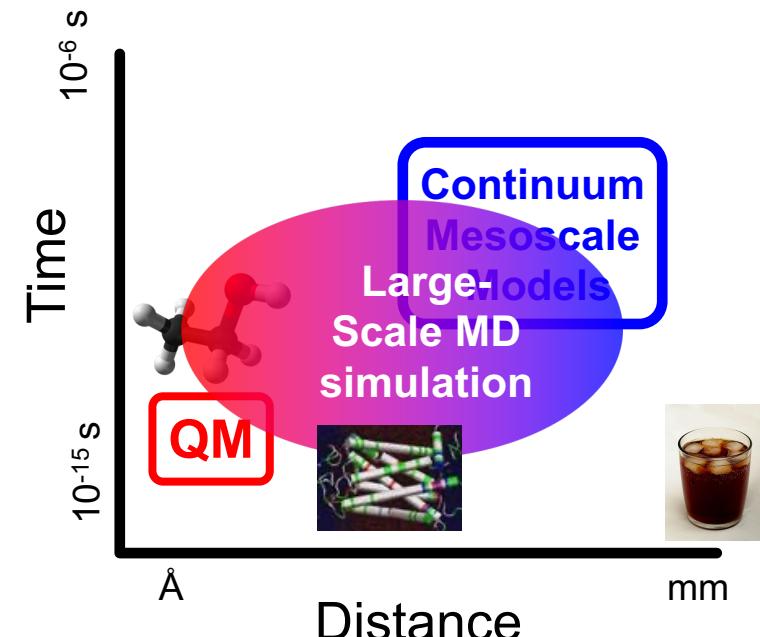


**Granular
Flow**



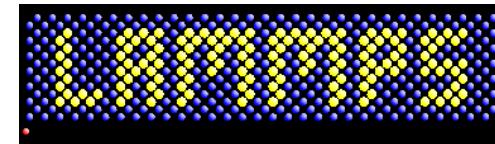
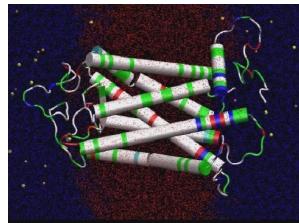
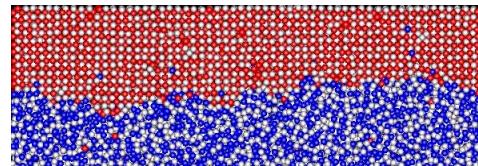
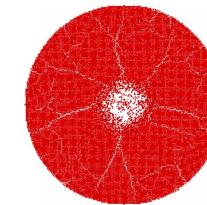
MD Time & Length Scales

- Quantum mechanical electronic structure calculations (QM) provide accurate description of mechanical and chemical changes on the atom-scale, but limited to \sim 1000 atoms
- Atom-scale phenomena drive a lot of interesting physics, chemistry, materials science, mechanics, biology...but it usually plays out on a much larger scale
- Mesoscale: much bigger than an atom, much smaller than a glass of soda
- QM and continuum/mesoscale models (CM) can not be directly compared—**large scale MD can bridge gap**



LAMMPS Code Overview

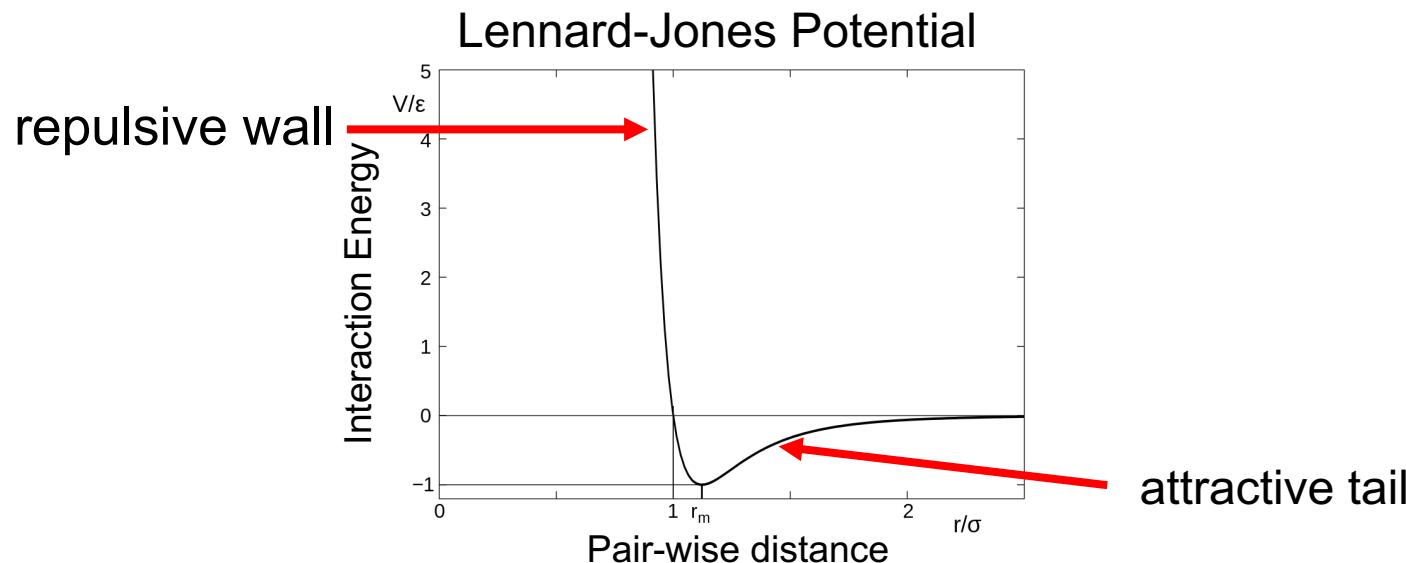
- Large-scale Atomic/Molecular Massively Parallel Simulator
- <https://lammps.org>
 - Open source, C++ code
 - Bio, materials, mesoscale



- Particle simulator at varying length and time scales
 - Electrons → atomistic → coarse-grained → continuum
- Spatial-decomposition of simulation domain for parallelism
- Energy minimization, dynamics, non-equilibrium MD
- GPU and OpenMP enhanced, Kokkos enabled
- Can be coupled to other scales: QM, kMC, FE, CFD, ...

Interatomic Potentials

- Quantum chemistry: solves Schrödinger equation (electron interactions) to get forces on atoms. Accurate but very computationally expensive and only feasible for small systems: ~1000 atoms
- Molecular dynamics: uses empirical force fields, sometimes fit to quantum data. Not as accurate but **much** faster
- MD typically only considers pair-wise or three-body interactions, scales as $O(N)$ (billion atom simulations are considered huge)



SNAP Training Workflow *FitSNAP*

<https://github.com/FitSNAP/FitSNAP>

Model Form

- Energy of atom i expressed as a basis expansion over K components of the bispectrum (B_k^i)

$$E_{SNAP}^i = \beta \cdot \mathbf{B}^i + \frac{1}{2}(\mathbf{B}^i)^T \cdot \alpha \cdot \mathbf{B}^i$$

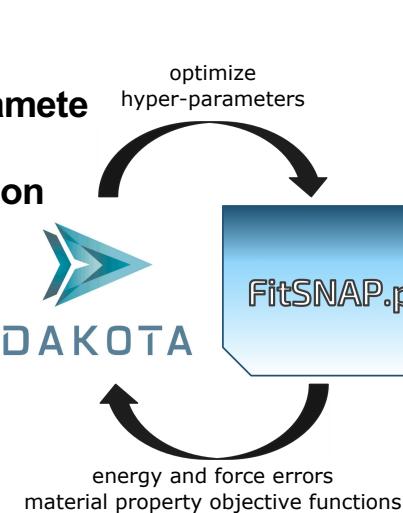
Regression Method

- β vector fully describes a SNAP potential
- Decouples MD speed from training set size

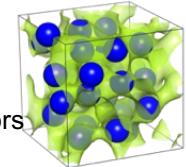
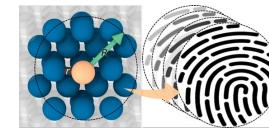
$$\min(||\mathbf{w} \cdot D\beta - T||^2 - \gamma_n ||\beta||^n)$$

Hyperparameter Optimization (SOGA Ge Algorithm)

FitSNAP



energies
forces
stress tensors



SNAP Bispectrum Components

- Neighbors of each atom are mapped onto unit sphere in 4D

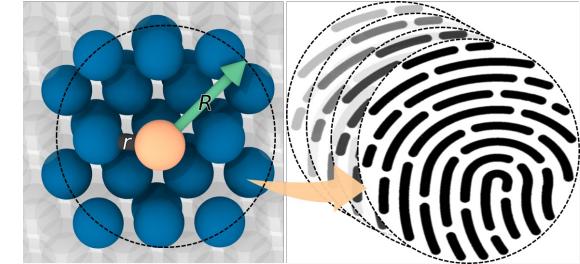
$$3D \text{ Ball: } (r, \theta, \phi), r < R_{cut} \Rightarrow 4D \text{ Sphere: } (\theta_0, \theta, \phi), \theta_0 = \frac{r}{R_{cut}}\pi$$

- Expand density around each atom in a basis of 4D hyperspherical **harmonics**,

$$\rho_i(\mathbf{r}) = \delta(\mathbf{0}) + \sum_{r_{i'} < R_{cut}} f_c(r_{i'}) w_{i'} \delta(\mathbf{r}_{i'})$$

- Bispectrum components of the 4D hyperspherical harmonic expansion are used as the geometric descriptors of the local environment

- Preserves universal physical symmetries
- Rotation, translation, permutation
- Size-consistent (extensible)



- Deeply nested loops
- Loop structure not regular
- Loop sizes ≤ 14

$$u_{m,m'}^j = U_{m,m'}^j(0,0,0) + \sum_{r_{ii'} < R_{cut}} f_c(r_{ii'}) w_i U_{m,m'}^j(\theta_0, \theta, \phi)$$

$$B_{j_1, j_2, j} = \sum_{m_1, m'_1 = -j_1}^{j_1} \sum_{m_2, m'_2 = -j_2}^{j_2} \sum_{m, m' = -j}^j (u_{m,m'}^j)^* H_{j_2 m_2 m'_2}^{j_1 m_1 m'_1} u_{m_1, m'_1}^{j_1} u_{m_2, m'_2}^{j_2}$$

Team for LAMMPS/SNAP GPU Optimizations

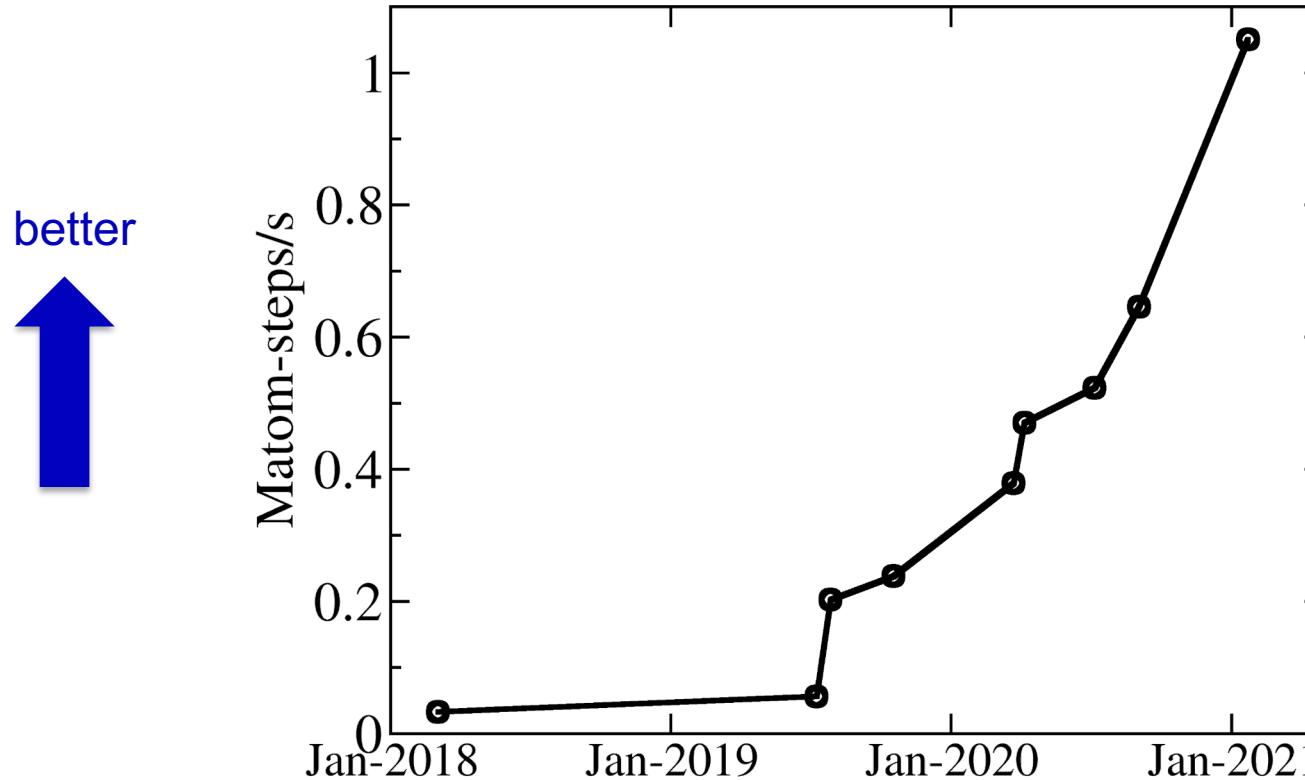
- **Stan Moore** (SNL): LAMMPS Kokkos lead developer, lynchpin for integrating Kokkos improvements into public LAMMPS (ported and reviewed code), benchmarked LAMMPS on pre-exascale testbeds
- **Aidan Thompson** (SNL), **Nick Lubbers** (LANL): algorithm redesign
- **Evan Weinberg** (NVIDIA): Major performance improvements on GPUs
- **Rahul Gayatri** (NERSC) and **Neil Mehta** (NERSC): performance improvements, support for TestSNAP and LAMMPS on pre-exascale testbeds, developing Kokkos OpenMPTarget backend
- **Nick Curtis** (AMD): Profiling SNAP on MI250X, Kokkos HIP backend improvements, investigating SNAP performance
- **Chris Knight** (ALCF) and **Yasi Ghadar** (ALCF): support for TestSNAP and LAMMPS on pre-Aurora testbeds
- **Daniel Arndt** (ORNL): developing Kokkos SYCL backend, helped tune TestSNAP performance on Arcticus

SNAP Improvements

- **Adjoint refactor:** algorithmic redesign that reduced the computational complexity and memory footprint by large factor
- **Flattened jagged multi-dimensional arrays:** reduced memory use
- **Major kernel refactor:** Broke one large kernel into many smaller kernels, reordered loop structure
- **Changed the memory data layout** of an array between kernels via transpose operations
- **Refactored loop indices and data structures** to use complex numbers and multi-dimensional arrays instead of arrays of structs
- Refactored some kernels to **avoid thread atomics** and use of **global memory**
- Judiciously used **Kokkos hierarchical parallelism** and **GPU shared memory**
- **Fused** a few selected **kernels**, which helped eliminate intermediate data structures and reduced memory use
- Added an AoSoA **memory data layout** inspired by Cabana code, which enforced perfect coalescing and load balancing in one of the kernels
- **Symmetrized data layouts** of certain matrices, which reduced memory overhead and use of thread atomics on GPUs (also improved CPU performance)
- Large refactor of Wigner matrices + derivatives to **use AoSoA data layout**
- **Pack several 32-bit integers** for Clebsch-Gordon coefficient lookup tables **into 128-bit int4 structs** and use 128-bit load/store to **reduce memory transactions**

SNAP Performance on V100

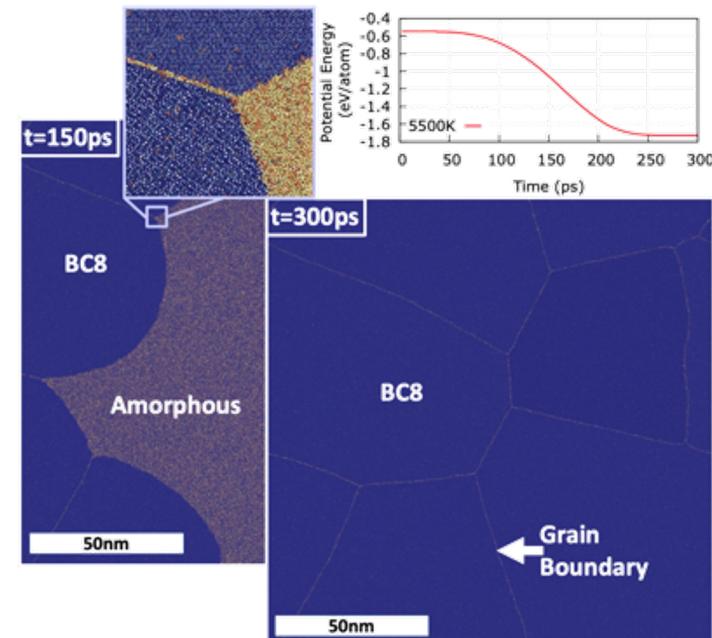
- Over 30x speedup since 2018!



- A few additional % speedup from recent improvement not shown

2021 ACM Gordon-Bell Award Finalist

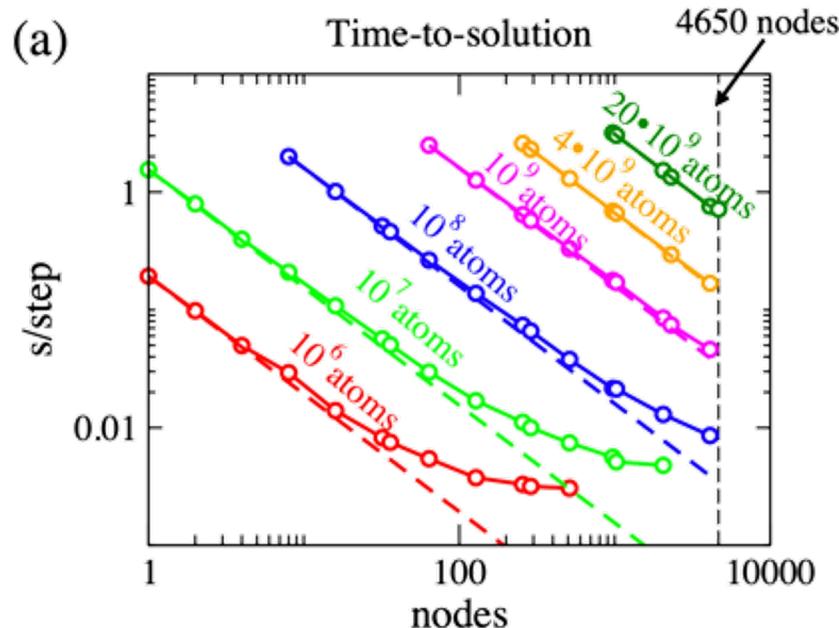
- **“Billion atom molecular dynamics simulations of carbon at extreme conditions and experimental time and length scales”**
- SNAP model of carbon
- Team members from Sandia, U of S. Florida, NVIDIA, NERSC, and KTH
- Ran SNAP carbon model on full OLCF Summit (27,900 GPUs)
- Achieved **50.0 PFLOPs: 24.9% of Summit theoretical peak**, 33.6% of measured LINPACK benchmark
- SNAP MD simulation rate **22.9x higher** than DeepMD (2020 Gordon-Bell award for quantum-accurate MD)



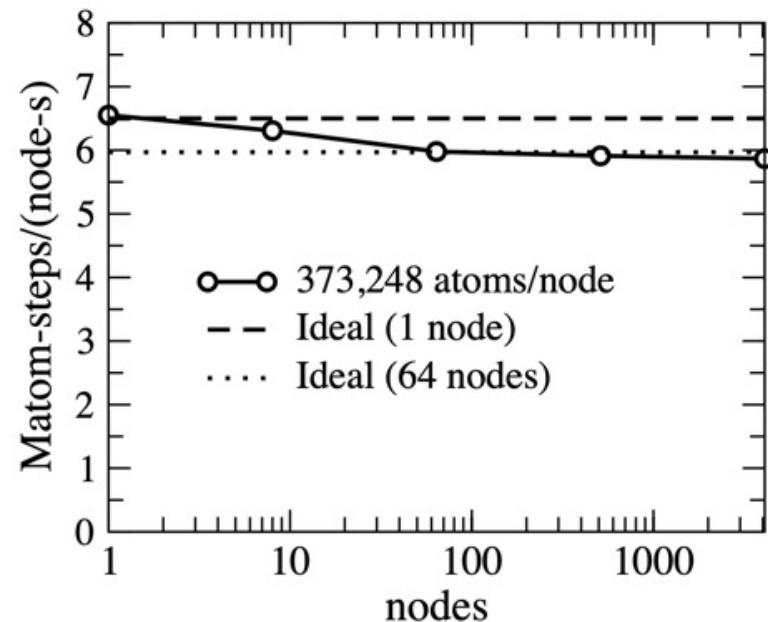
OLCF Summit Scaling Results

Benchmarked up to 20 billion atoms (amorphous carbon sample)

strong scaling



weak scaling

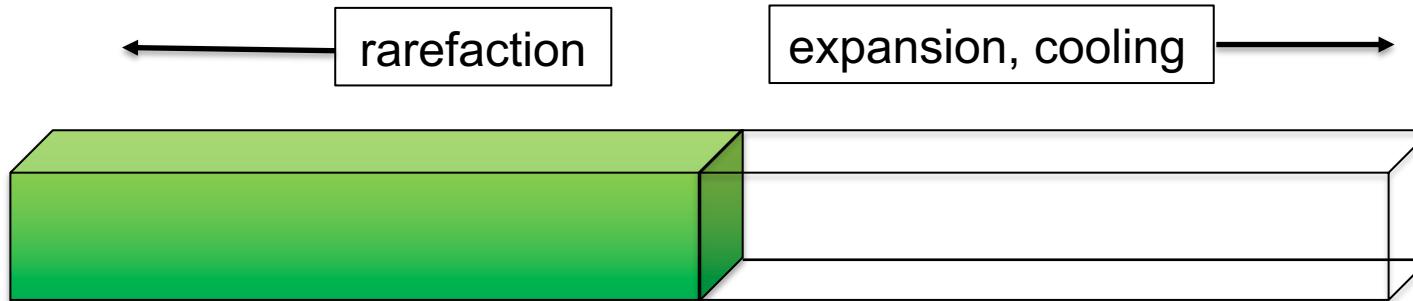


NNSA's ATS-2 Sierra Supercomputer

- Hardware similar to OLCF Summit, but fewer GPUs per node
- 4320 nodes, 4 V100-16GB GPUs per node, IBM Power 9 CPUs
- At one point was #3 on the TOP500 supercomputer list, now #6 (as of November 2022)
- Located at Lawrence Livermore National Laboratory in California

Problem: Free Expansion

- Supercritical fluid expands into vacuum
- Supercritical means the material is so hot that there is no longer a clear distinction between the liquid and vapor phases
- When the supercritical fluid expands, the temperature drops below the critical temperature, and the fluid rapidly phase-separates into liquid droplets and vapor bubbles
- Rarefaction wave travels in opposite direction of expansion, limits maximum timescale of simulation

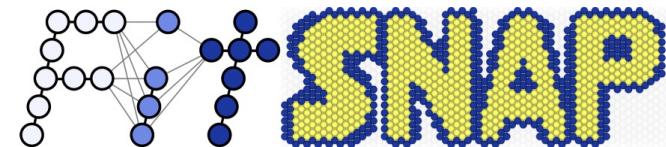


Early Work: Lennard-Jones

- The Lennard-Jones (LJ) interatomic potential is a simple empirical model that still captures many relevant physics phenomena of materials (~argon)
- LJ enables rapid throughput with large atom counts
- Investigated free expansion by running up to **~24 billion atoms** on 8192 GPUs on Sierra
- LJ is computationally very cheap: simulation size is limited by GPU memory on Sierra
- However, need a realistic model for metal: **develop SNAP machine learning potential for aluminum**
- SNAP model much more expensive: simulation size is limited more by time stepping throughput (i.e. number of compute days allocated on full machine)

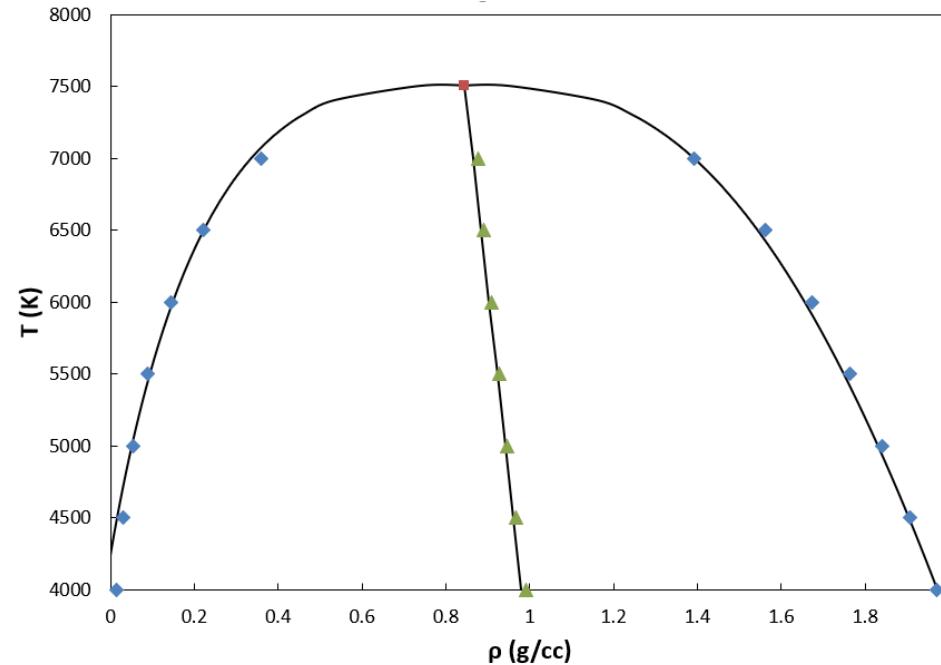
Training the AI SNAP Model

- Density function theory (DFT) used as “ground truth” training data
- Normand Modine (SNL) generated DFT data using VASP code
- Training set included ~800,000 configurations!
- Bulk Al structures at a range of densities and temperatures (1.2–3.0 g/cc, 933–10,000 K)
- Freely expanding Al slabs at the same range of temperatures
- Ember Sikorski (SNL) optimized SNAP hyperparameters and generated model candidates using DAKOTA and FitSNAP



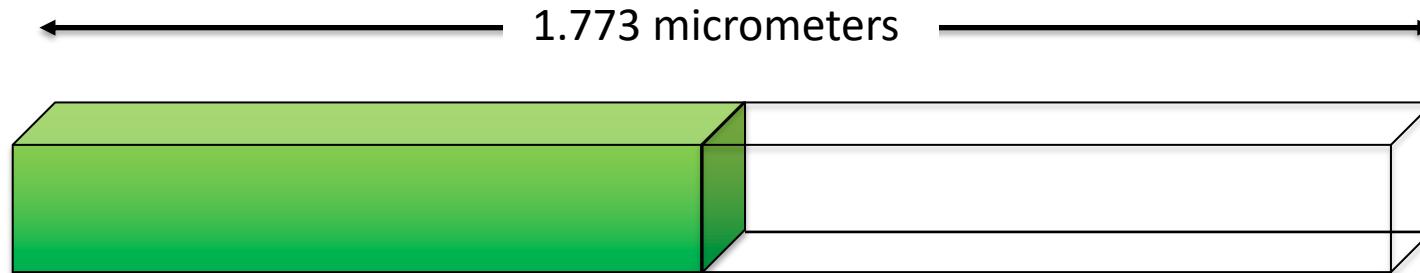
Evaluating Model Candidates

- Multiple SNAP model candidates were generated
- Candidates were evaluated by running small ($\sim 30k$ atom) simulations at different temperatures to map out the liquid-vapor coexistence region
- Critical temperatures and densities were fit using the universal Ising critical exponent $\beta \approx 0.326$ and law of rectilinear diameter
- The predicted critical point was compared to values from experiment and theory
- One of the best candidates was then selected to run at large scale on Sierra



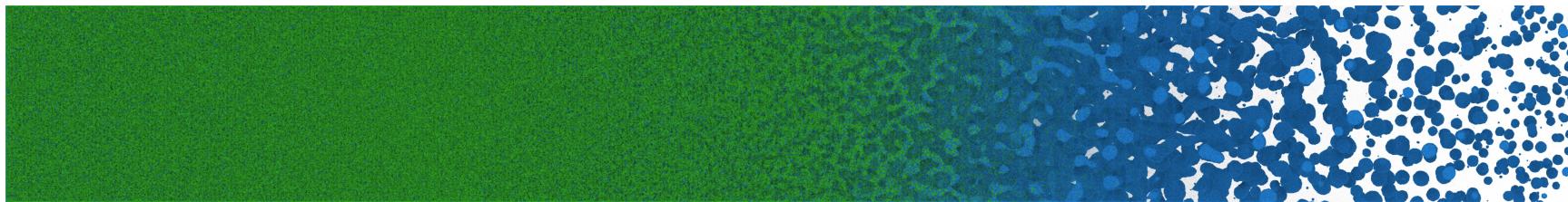
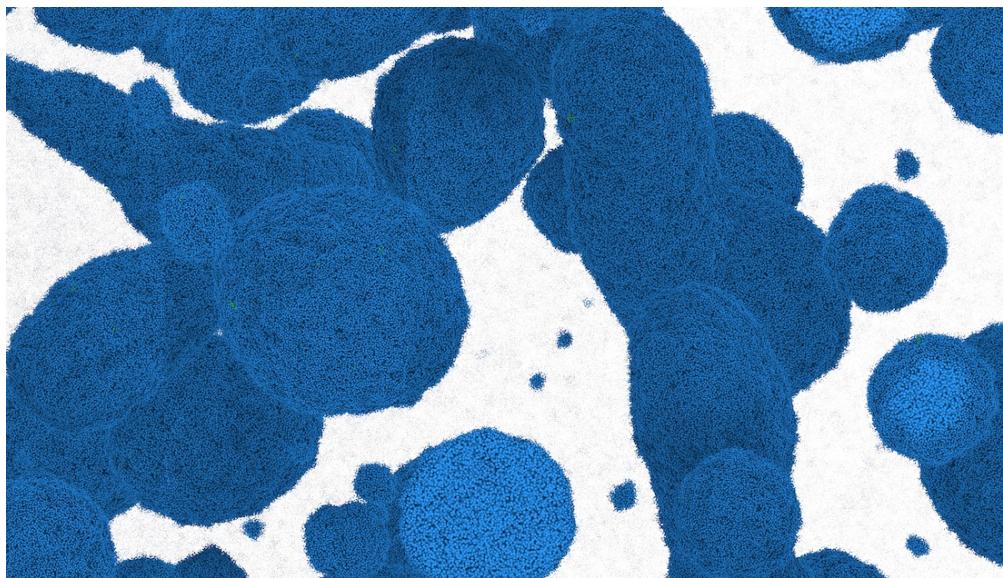
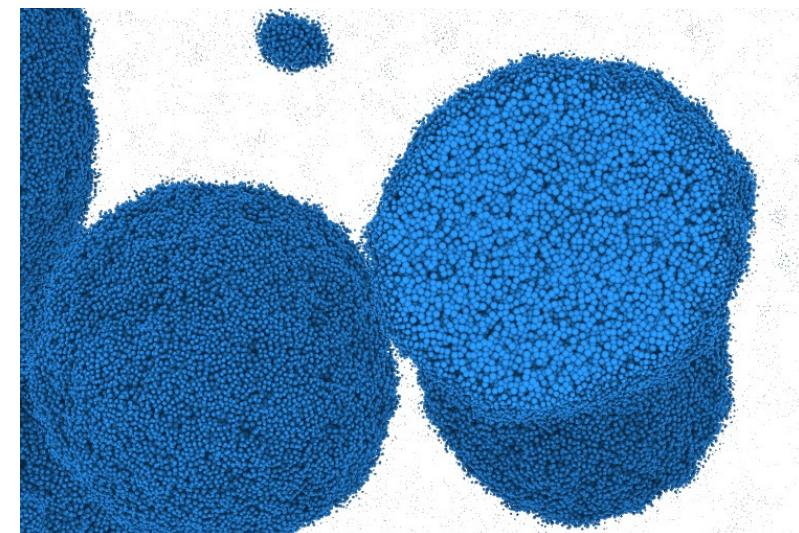
Aluminum Free Expansion

- ~1.5 billion atoms on 8192 GPUs (2048 nodes, ~47% of full Sierra), using KOKKOS package in LAMMPS
- Simulation is 1.773 micrometers long in the x -dimension, 8x smaller in the y - z dimensions
- Infinite periodic boundary conditions in y - z as well
- Simulation starts at a temperature of 9000 K and a density of 1.5 gm/cc (aluminum $T_c \approx 6500$ K)
- Supercritical fluid initially fills half the cell (~0.9 micron long) and then expands out
- 1 femtosecond timestep, ran for 0.56 nanoseconds total physical time



Simulation Visualization

- Particle size is rendered proportional to local density: effectively removes the vapor phase and leaves only liquid droplets
- Coloring: green = supercritical fluid, blue = subcritical liquid (approximate)



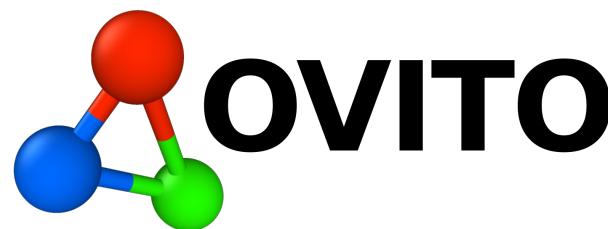
Visualization with OVITO

OVITO Advantages

- Domain specific: highly optimized for particle simulations, has direct support for LAMMPS dump files
- Produces high quality visualizations with ray tracing, ambient occlusion, etc.
- Highly scriptable with Python and useful for data post-processing and analysis in general (in addition to rendering images)

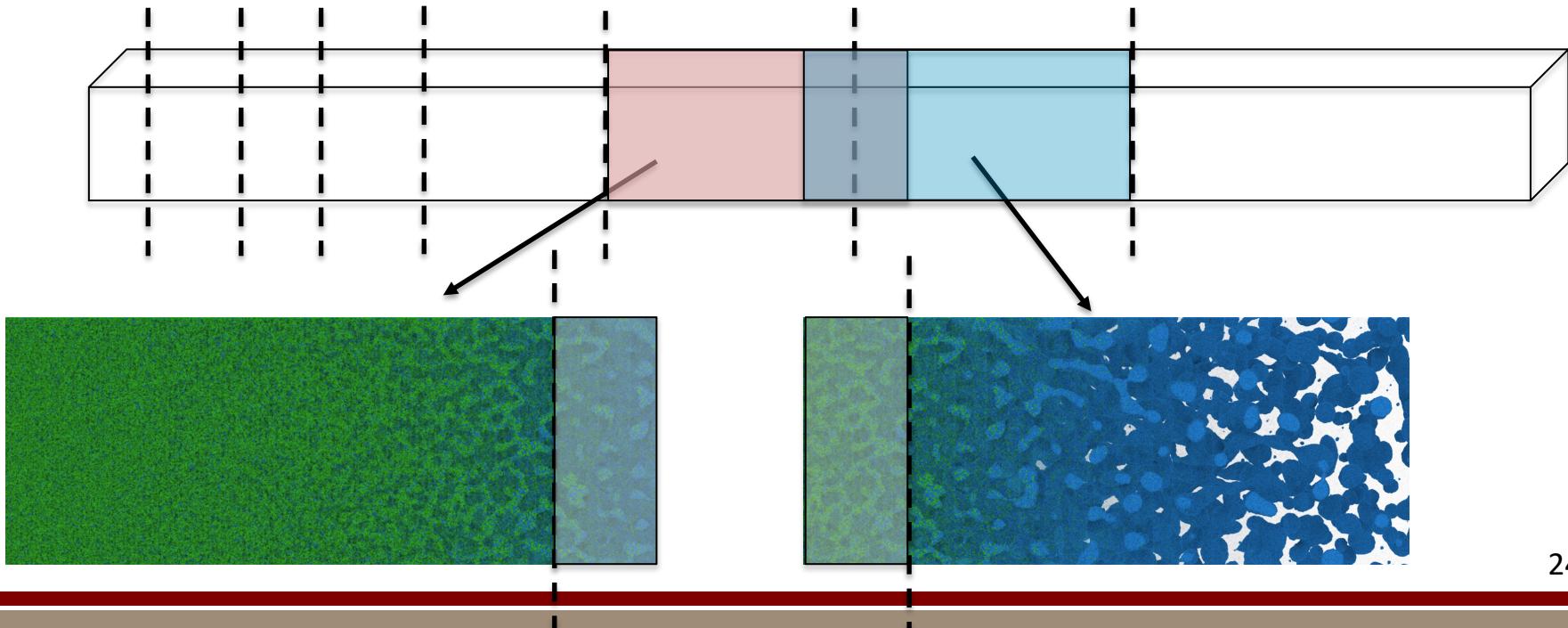
OVITO Disadvantages

- Only runs on a single node with multithreading and shared memory, no MPI parallelization
- Can only visualize up to ~2 billion particles at a time (assuming unlimited memory)



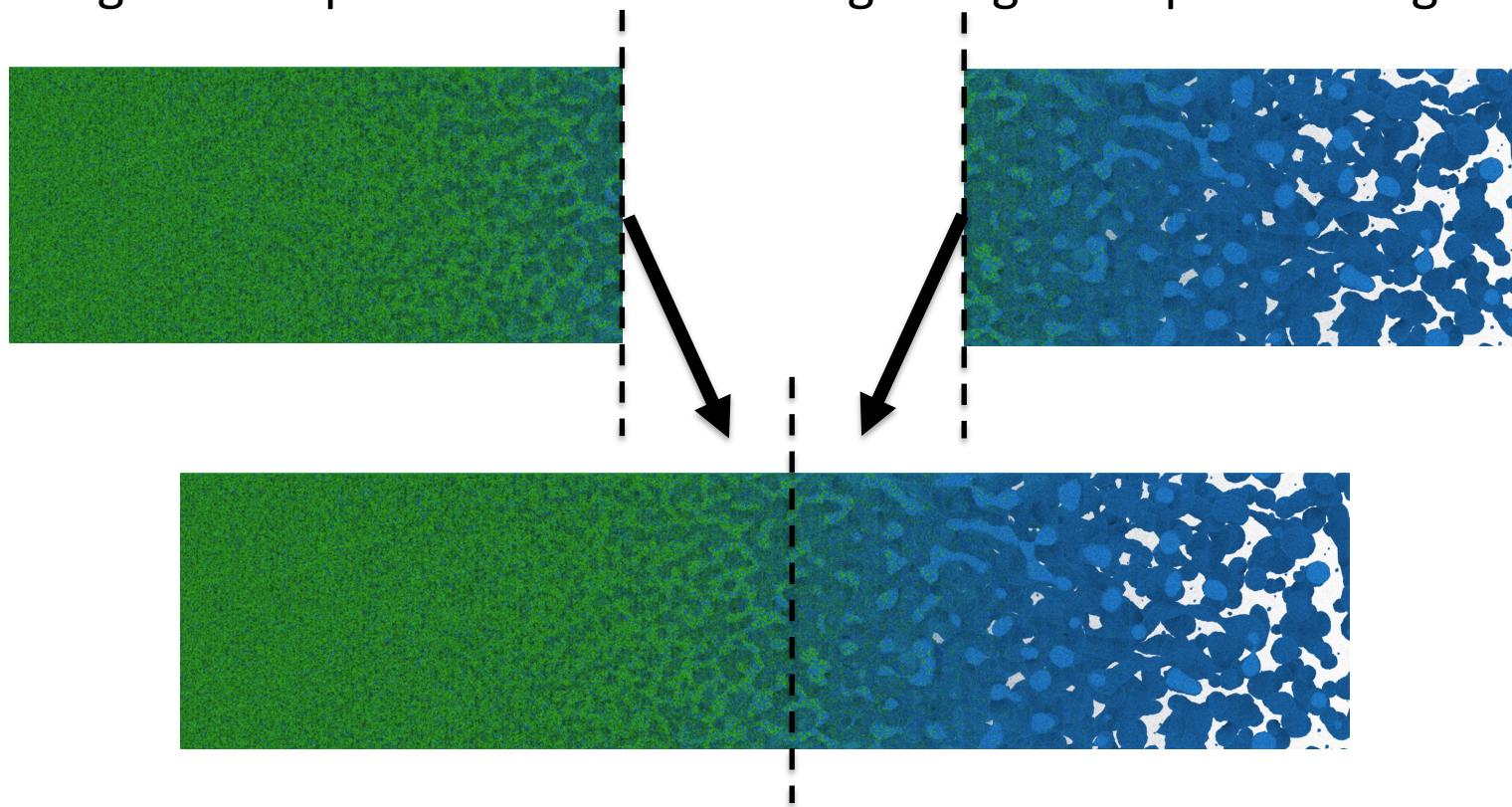
OVITO Parallelism Workaround

- LAMMPS reshuffles atom data between ranks so each rank has a “slice” of the simulation data in the x-direction
- Each rank outputs to a separate file (e.g. 8192 files total)
- MPI driver program launches separate instances of OVITO on many nodes
- Each OVITO instance loads atom data from “owned” slices, along with neighboring “ghost” slice data to create a buffer zone to reduce visual edge artifacts



OVITO Parallelism Workaround (cont.)

- OVITO renders an image of the slice, including buffer zone, then the buffer region is cropped off
- Another MPI driver program stitches all the small slice images together in parallel to create a single large composite image



OVITO Parallelism Workaround (cont.)

Advantages:

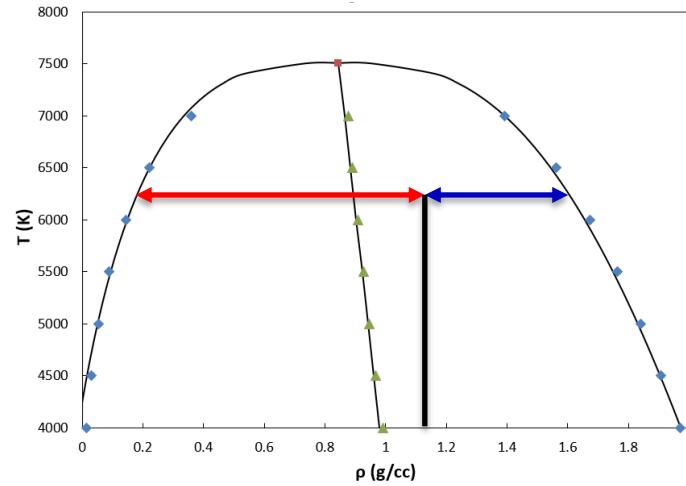
- Highly scalable: large images are rendered in an (almost) embarrassingly parallel manner
- Can render more than 2 billion atoms

Disadvantages:

- Minor artifacts in lighting/shadows, but overall produces nice, usable images in parallel
- Can only visualize a single face straight on (so everything lines up), no 3D perspective views
- Would like to also try Paraview in the future (less domain specific, but MPI-enabled so requires less workarounds)

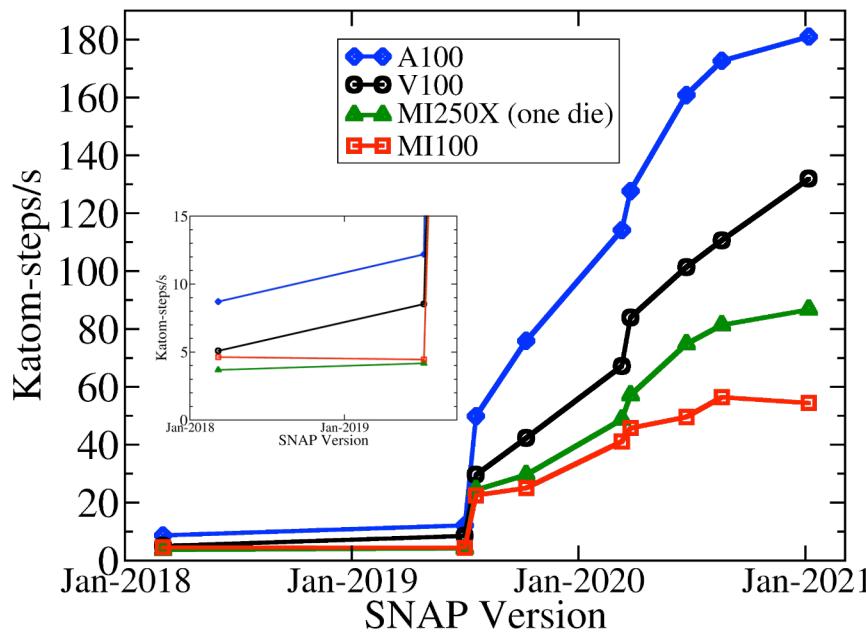
Free Expansion: Next Steps

- Performed some data analysis of earlier LJ simulations, but need to analyze new data from SNAP runs
- Investigate how well each slice in the simulation matches the phase fractions predicted from the equilibrium liquid-vapor tie line
- Can also analyze droplet size and growth rate, etc.
- Also started running a 4x longer simulation with SNAP aluminum = ~6 billion atoms: allows for a longer timescale before the rarefaction wave reaches the front edge of the box



Towards Exascale

- Ran older versions of SNAP on OLCF Crusher MI250X: NVIDIA improvements also helped MI250X (V100 was an excellent proxy for MI250X)
- ~25x performance improvement comparing original vs latest code for both V100 and MI250X (see inset), different benchmark than earlier slide
- Additional few % improvement using latest Kokkos, ROCm, and LAMMPS on MI250X beyond latest data point on plot



**Measured
MI250X/V100
FLOP ratio =
~2.4x, but
performance is
only 0.7x, so we
lost 3.4x, why?**

SNAP Kernels and Limiters

V100:

- **ComputeYi**: 66% of runtime, L1 cache bandwidth bound
- **ComputeFusedDeidrj**: 27% of runtime, FP64 compute bound
- **ComputeUi**: 3% of runtime, FP64 atomic-add bound

MI250X:

- **ComputeYi**: 63% of runtime, currently VALU (int32) bound
- **ComputeFusedDeidrj**: 29% of runtime
- **ComputeUi**: 5% of runtime

INT32 Throughput Issue

- Nick Curtis (AMD) profiled ComputeYi (largest kernel in SNAP): **90% VALU int32 bound** on MI250X, only waiting on memory 10% of the time
- Kokkos SNAP uses up to **4D arrays** in deeply nested loops: large int32 computation to index Kokkos views
- ROCm 5.3.0 has improvement to AMD compiler to generate IMAD (integer fused multiply/add) operations¹, but no improvement in practice for SNAP
- Another compiler optimization in ROCm 5.4.0 is expected to help Kokkos MDRangePolicy (potential speedup unknown)
- V100 has **independent parallel integer and floating-point data paths**, so the Volta SM is efficient on workloads with a mix of computation and addressing calculations²

[1] <https://reviews.llvm.org/D127253>

[2] <https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf>, page 7

Frontier L1 Cache Size

AMD MI250X GPU (one die):

- 24 FP64 TFLOPS peak theoretical¹, **18.3 FP64 TFLOPS** measured with Kokkos Bytes & FLOPS benchmark, i.e. with limited power and cooling, using AMD internal optimizations for Kokkos², **18.9 TFLOPS** for raw HIP with same benchmark
- **L1-cache/SM = 16 KB** (fixed)

NVIDIA V100 GPU:

- 7.8 FP64 TFLOPS peak theoretical, **7.8 FP64 TFLOPS** measured **L1-cache/SM = 96 KB** (typical but can be changed)
- ComputeYi L1 cache hit rate: **~60% on MI250X, ~90% on V100**
- V100 performance **highly sensitive** to reducing L1 cache size (i.e. using *cudaFuncCachePreferShared* instead of *PreferL1*)

[1] <https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf>

[2] <https://github.com/kokkos/kokkos/pull/4755>, AMD is working through how to implement these optimizations in public Kokkos

Conclusions

- Atomistic simulations can generate **unprecedented insight into phase change kinetics and fluid microstructure evolution** during free expansion
- Provide a basis for **improving two-phase equation-of-state models** in **hydrocode** simulations
- **Machine learning is a powerful tool** but still **requires humans in the loop** to evaluate model candidates and interpret the results
- SNAP machine learning potential in LAMMPS is **highly optimized for NVIDIA GPUs**
- Need **more profiling** to better understand and potentially mitigate AMD MPI250X performance bottlenecks (L1 cache size and int32 throughput) for **OLCF Frontier exascale supercomputer**

Thank you

Questions?