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Introduction ) e,

For some flyers and wire vaporization experiments (e.g. Sandia’s Z Machine)
the expanding material enters the liquid-vapor coexistence region

Most continuum hydrodynamics codes use equilibrium equations of state:
assumes phase transformation kinetics are short compared to the dynamics of
the simulation

However, if liquid-vapor transformation kinetics are long compared to the
simulation dynamics, then once material enters these two-phase regions, the

simulation is no longer valid
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Why Atomistic? ) ..

= Atomistic simulations (e.g. molecular dynamics) avoid explicit
assumptions about the material behavior in the liquid-vapor
coexistence region

= Accurately capture droplet formation, coalescence, break-up,
surface tension, heat transfer, etc., without approximations
commonly required for continuum models

= The goal of this work is to help provide a basis for two-phase
equations-of-state models in hydrocode simulations of free
expansion (e.g. exploding wires)

= Disadvantages of MD over continuum models: computationally
expensive, smaller length and time scales (but gap can be partially
closed with large supercomputers)




Molecular Dynamics: What is it?
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= Classical Mechanics dv. F
= Atoms are Point Masses: ry, 1y, ..... I'y Newton’s Equations: d F=—"
= Positions, Velocities, Forces: r;, v;, F; ¢ m
= Potential Energy Function = V(rV) d N
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MD Versatility
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Coupling to Science:
Solid metals,
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MD Time & Length Scales ) .

= Quantum mechanical electronic
structure calculations (QM) provide
accurate description of mechanical and

chemical changes on the atom-scale, g
but limited to ~1000 atoms -
= Atom-scale phenomenadrive a lotof Continuum
interesting physics, chemistry, £
|_

materials science, mechanics, Scale MD
biology...but it usually plays out on a simulation
much larger scale

10-15s

= Mesoscale: much bigger than an atom,
much smaller than a glass of soda Distance

= QM and continuum/mesoscale models
(CM) can not be directly compared—
large scale MD can bridge gap

Picture of soda glass: by Simon Cousins from High Wycombe, England - Bubbles, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=23020999 6




LAMMPS Code Overview ) i,

= |arge-scale Atomic/Molecular Massively Parallel Simulator
» https://lammps.org

= QOpen source, C++ code
= Bio, materials, mesoscale

= Particle simulator at varying length and time scales
= Electrons = atomistic = coarse-grained = continuum

= Spatial-decomposition of simulation domain for parallelism
= Energy minimization, dynamics, non-equilibrium MD

= GPU and OpenMP enhanced, Kokkos enabled

= Can be coupled to other scales: QM, kMC, FE, CFD, ...
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Interatomic Potentials

= Quantum chemistry: solves Schrodinger equation (electron
interactions) to get forces on atoms. Accurate but very
computationally expensive and only feasible for small systems:
~1000 atoms

=  Molecular dynamics: uses empirical force fields, sometimes fit to
guantum data. Not as accurate but much faster

= MD typically only considers pair-wise or three-body interactions,
scales as O(N) (billion atom simulations are considered huge)

Lennard-Jones Potential
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e o [ ]
SNAP Training Workflow Flt
https://github.com/FitSNAP/FitSNAP

energies Al R
forces - >
stress tensors &

Model Form

* Energy of atom i expressed as a basis expansion
over K components of the bispectrum (B.)

optimize
Hyperparamete hyper-parameters Tﬂ’@ﬁlﬁ]ﬁﬂ‘ﬂg
i i Lo i r Data
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(SOGA Ge

Regression Method Algorithm

* [ vector fully describes a SNAP potential
* Decouples MD speed from training set size
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SNAP Bispectrum Components ) .

= Neighbors of each atom are mapped onto unit sphere in 4D

r
3D Ball: (r,0,¢),7 < Reye = 4D Sphere: (8y,0,¢),6, = R n

cut

= Expand density around each atom in a basis of 4D

hyperspherical harmonics,

pi(r) = 6(0) + Z fe(ri)wd(ry) * Deeply nested loops

’f‘i/ <Rcut
* Loop structure not regular

= Bispectrum components of the 4D hyperspherical harmonic Loop sizes <= 14

expansion are used as the geometric descriptors of the local

environment

* Preserves universal physical symmetries R 0,0,0) + Z f(r“,)w_Uj (06,0, ¢)
* Rotation, translation, permutation ’ ,’ _ 7o <Reut 7

J1 J2 J
. . . . % ]:mm'/ . .
« Size-consistent (extensible) Bj, i = E E E '(ufmm,) H;;Tn;”;g Ut Uy
J
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Team for LAMMPS/SNAP GPU Optimizations (.

Stan Moore (SNL): LAMMPS Kokkos lead developer, lynchpin for
integrating Kokkos improvements into public LAMMPS (ported and
reviewed code), benchmarked LAMMPS on pre-exascale testbeds

Aidan Thompson (SNL), Nick Lubbers (LANL): algorithm redesign
Evan Weinberg (NVIDIA): Major performance improvements on GPUs

Rahul Gayatri (NERSC) and Neil Mehta (NERSC): performance
improvements, support for TestSNAP and LAMMPS on pre-exascale
testbeds, developing Kokkos OpenMPTarget backend

Nick Curtis (AMD): Profiling SNAP on MI250X, Kokkos HIP backend
improvements, investigating SNAP performance

Chris Knight (ALCF) and Yasi Ghadar (ALCF): support for TestSNAP and
LAMMPS on pre-Aurora testbeds

Daniel Arndt (ORNL): developing Kokkos SYCL backend, helped tune
TestSNAP performance on Arcticus

11




SNAP Improvements )

Adjoint refactor: algorithmic redesign that reduced the computational complexity and
memory footprint by large factor

= Flattened jagged multi-dimensional arrays: reduced memory use

= Major kernel refactor: Broke one large kernel into many smaller kernels, reordered loop
structure

= Changed the memory data layout of an array between kernels via transpose operations

= Refactored loop indices and data structures to use complex numbers and multi-dimensional
arrays instead of arrays of structs

= Refactored some kernels to avoid thread atomics and use of global memory
= Judiciously used Kokkos hierarchical parallelism and GPU shared memory

= Fused a few selected kernels, which helped eliminate intermediate data structures and
reduced memory use

= Added an AoSoA memory data layout inspired by Cabana code, which enforced perfect
coalescing and load balancing in one of the kernels

= Symmetrized data layouts of certain matrices, which reduced memory overhead and use of
thread atomics on GPUs (also improved CPU performance)

= Large refactor of Wigner matrices + derivatives to use AoSoA data layout

= Pack several 32-bit integers for Clebsch-Gordon coefficient lookup tables into 128-bit int4
structs and use 128-bit load/store to reduce memory transactions

12
-~ ...



SNAP Performance on V100 ) .

= Qver 30x speedup since 2018!

better

Matom-steps/s

0.2 .

0 o— | | |
Jan-2018 Jan-2019 Jan-2020 Jan-2021

= A few additional % speedup from recent improvement not shown
13



2021 ACM Gordon-Bell Award Finalist

= “Billion atom molecular dynamics
simulations of carbon at extreme
conditions and experimental time
and length scales”

= SNAP model of carbon

= Team members from Sandia, U of S.
Florida, NVIDIA, NERSC, and KTH

= Ran SNAP carbon model on full OLCF
Summit (27,900 GPUs)

= Achieved 50.0 PFLOPs: 24.9% of
Summit theoretical peak, 33.6% of
measured LINPACK benchmark

= SNAP MD simulation rate 22.9x
higher than DeepMD (2020 Gordon-

Bell award for quantum-accurate
MD)
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K. N. Cong, J. T. Willman, S. G. Moore, A. B. Belonoshko, R. Gayatri, E. Weinberg, M. A. Wood, A. P. Thompson, I. I. Oleynik, In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '21), Article 4, 1-12, 2022. 14




) R

OLCF Summit Scaling Results

Benchmarked up to 20 billion atoms (amorphous carbon sample)
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(a) Time-to-solution 465(?10(168 8 T T T T1T70] T T TTTI I T TTTTI] T
%} &
1 @ .r .
= S =
I ) L _
|5y i §" 4+~  o0—o0 373,248 atoms/node —
Z . ? 3. == Ideal (1 node) i
| : i . Ideal (64 nodes) .
0.01 ' s <[ 7
E > 1+ _
i IN L s . { 0_ Lol Lol Lol 1 |_
. 100 10000 1 10 100 1000
nodes nodes

K. N. Cong, J. T. Willman, S. G. Moore, A. B. Belonoshko, R. Gayatri, E. Weinberg, M. A. Wood, A. P. Thompson, I. I. Oleynik, In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '21), Article 4, 1-12, 2022. 15
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NNSA’s ATS-2 Sierra Supercomputer

Hardware similar to OLCF Summit, but fewer GPUs per node
4320 nodes, 4 V100-16GB GPUs per node, IBM Power 9 CPUs

Sandia
National
Laboratories

= At one point was #3 on the TOP500 supercomputer list, now #6 (as

of November 2022)
Located at Lawrence Livermore National Laboratory in California

16
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Problem: Free Expansion )

= Supercritical fluid expands into vacuum

= Supercritical means the material is so hot that there is no longer a
clear distinction between the liquid and vapor phases

= When the supercritical fluid expands, the temperature drops below
the critical temperature, and the fluid rapidly phase-separates into
liquid droplets and vapor bubbles

= Rarefaction wave travels in opposite direction of expansion, limits
maximum timescale of simulation

« rarefaction expansion, cooling —m




Early Work: Lennard-Jones ) .

The Lennard-Jones (LJ) interatomic potential is a simple empirical model
that still captures many relevant physics phenomena of materials (~argon)

LJ enables rapid throughput with large atom counts

Investigated free expansion by running up to ~24 billion atoms on 8192
GPUs on Sierra

LJ is computationally very cheap: simulation size is limited by GPU
memory on Sierra

However, need a realistic model for metal: develop SNAP machine
learning potential for aluminum

SNAP model much more expensive: simulation size is limited more by
time stepping throughput (i.e. number of compute days allocated on full
machine)




Training the Al SNAP Model ) .

= Density function theory (DFT) used as “ground truth” training data
= Normand Modine (SNL) generated DFT data using VASP code
" Training set included ~800,000 configurations!

= Bulk Al structures at a range of densities and temperatures (1.2-3.0
g/cc, 933-10,000 K)

" Freely expanding Al slabs at the same range of temperatures

= Ember Sikorski (SNL) optimized SNAP hyperparameters and
generated model candidates using DAKOTA and FitSNAP

>
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Explore and predict with confidence
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Evaluating Model Candidates ) B,

= Multiple SNAP model candidates were generated

= Candidates were evaluated by running small (~30k atom) simulations at different
temperatures to map out the liquid-vapor coexistence region

= Critical temperatures and densities were fit using the universal Ising critical
exponent B = 0.326 and law of rectilinear diameter

= The predicted critical point was compared to values from experiment and theory
= One of the best candidates was then selected to run at large scale on Sierra
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Aluminum Free Expansion )

= ~1.5 billion atoms on 8192 GPUs (2048 nodes, ~47% of full Sierra),
using KOKKOS package in LAMMPS

= Simulation is 1.773 micrometers long in the x-dimension, 8x smaller
in the y-z dimensions

= [nfinite periodic boundary conditions in y-z as well

= Simulation starts at a temperature of 9000 K and a density of 1.5
gm/cc (aluminum T, = 6500 K)

= Supercritical fluid initially fills half the cell (~0.9 micron long) and
then expands out

= 1 femtosecond timestep, ran for 0.56 nanoseconds total physical
time

1.773 micrometers

— 21




Simulation Visualization ) S,

= Particle size is rendered proportional to local density: effectively
removes the vapor phase and leaves only liquid droplets

= Coloring: green = supercritical fluid, blue = subcritical liquid
(approximate)
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Visualization with OVITO Lf

OVITO Advantages

= Domain specific: highly optimized for particle simulations, has
direct support for LAMMPS dump files

= Produces high quality visualizations with ray tracing, ambient
occlusion, etc.

= Highly scriptable with Python and useful for data post-processing
and analysis in general (in addition to rendering images)

OVITO Disadvantages

= Only runs on a single node with multithreading and shared
memory, no MPI parallelization

= Can only visualize up to ~2 billion particles at a time (assuming

unlimited memory) AOVITO

23




OVITO Parallelism Workaround ) =,

= LAMMPS reshuffles atom data between ranks so each rank has a “slice” of
the simulation data in the x-direction

= Each rank outputs to a separate file (e.g. 8192 files total)
=  MPI driver program launches separate instances of OVITO on many nodes

=  Each OVITO instance loads atom data from “owned” slices, along with
neighboring “ghost” slice data to create a buffer zone to reduce visual
edge artifacts

- o —— = -

\
-




OVITO Parallelism Workaround (cont.) (@&

OVITO renders an image of the slice, including buffer zone, thenthe
buffer region is cropped off

Another MPI driver program stiches all the small slice images
together in parallel to crleate a single large composite image
|




OVITO Parallelism Workaround (cont.)

Advantages:

= Highly scalable: large images are rendered in an (almost)
embarrassingly parallel manner

= Can render more than 2 billion atoms
Disadvantages:

= Minor artifacts in lighting/shadows, but overall produces nice,

usable images in parallel

= Can only visualize a single face straight on (so everything lines up),

no 3D perspective views

= Would like to also try Paraview in the future (less domain specific,

but MPIl-enabled so requires less workarounds)

Sandia
National
Laboratories

26




Free Expansion: Next Steps
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Performed some data analysis of earlier LJ simulations, but need to
analyze new data from SNAP runs

Investigate how well each slice in the simulation matches the phase
fractions predicted from the equilibrium liquid-vapor tie line

Can also analyze droplet size and growth rate, etc.

Also started running a 4x longer simulation with SNAP aluminum =
~6 billion atoms: allows for a longer timescale before the
rarefaction wave reaches the front edge of the box

m
< g >

T{K)
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Towards Exascale

Ran older versions of SNAP on OLCF Crusher MI250X: NVIDIA
improvements also helped MI250X (V100 was an excellent proxy for

MI250X)

Laboratories

~25x performance improvement comparing original vs latest code for
both V100 and MI250X (see inset), different benchmark than earlier slide

Additional few % improvement using latest Kokkos, ROCm, and LAMMPS
on MI250X beyond latest data point on plot

180?
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Measured
MI250X/V100
FLOP ratio =
~2.4X, but
performance is
only 0.7x, so we
lost 3.4x, why?

28
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SNAP Kernels and Limiters ) e

V100:
= ComputeYi: 66% of runtime, L1 cache bandwidth bound

= ComputeFusedDeidrj: 27% of runtime, FP64 compute bound
= ComputeUi: 3% of runtime, FP64 atomic-add bound

MI250X:
= ComputeYi: 63% of runtime, currently VALU (int32) bound
= ComputeFusedDeidrj: 29% of runtime

= ComputeUi: 5% of runtime




INT32 Throughput Issue ) .

= Nick Curtis (AMD) profiled ComputeYi (largest kernel in SNAP): 90%
VALU int32 bound on MI250X, only waiting on memory 10% of the
time

= Kokkos SNAP uses up to 4D arrays in deeply nested loops: large
int32 computation to index Kokkos views

= ROCm 5.3.0 has improvement to AMD compiler to generate IMAD
(integer fused multiply/add) operations?, but no improvement in
practice for SNAP

= Another compiler optimization in ROCm 5.4.0 is expected to help
Kokkos MDRangePolicy (potential speedup unknown)

= V100 has independent parallel integer and floating-point data
paths, so the Volta SM is efficient on workloads with a mix of

computation and addressing calculations?

[1] https://reviews.llvm.org/D127253
[2] https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf, page 7

30



https://asc.llnl.gov/coral-2-benchmarks
https://reviews.llvm.org/D127253
https://asc.llnl.gov/coral-2-benchmarks
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Frontier L1 Cache Size rh) fim

AMD MI250X GPU (one die):

= 24 FP64 TFLOPS peak theoretical!, 18.3 FP64 TFLOPS
measured with Kokkos Bytes & FLOPS benchmark, i.e. with

limited power and cooling, using AMD internal optimizations
for Kokkos?, 18.9 TFLOPS for raw HIP with same benchmark

= Ll-cache/SM = 16 KB (fixed)
NVIDIA V100 GPU:

= 7.8 FP64 TFLOPS peak theoretical, 7.8 FP64 TFLOPS measured
L1-cache/SM = 96 KB (typical but can be changed)

= ComputeYi Ll cache hit rate: “60% on MI250X, ~90% on V100

= V100 performance highly sensitive to reducing L1 cache size
(i.e. using cudaFuncCachePreferShared instead of Preferl1)

[1] https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
[2] https://github.com/kokkos/kokkos/pull/4755, AMD is working through how to implement these optimizations in public Kokkos 31



https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://github.com/kokkos/kokkos/pull/4755

Conclusions ) S,

Atomistic simulations can generate unprecedented insight into
phase change kinetics and fluid microstructure evolution during
free expansion

Provide a basis for improving two-phase equation-of-state models
in hydrocode simulations

Machine learning is a powerful tool but still requires humans in
the loop to evaluate model candidates and interpret the results
SNAP machine learning potential in LAMMPS is highly optimized
for NVIDIA GPUs

Need more profiling to better understand and potentially mitigate
AMD MPI250X performance bottlenecks (L1 cache size and int32
throughput) for OLCF Frontier exascale supercomputer




Thank you ) .

Questions?

33




