This paper describes objective technical results and analysis. Any subijective views or opinions that mightlbelexpressed}in|
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

SAND2022-16044C

Sandia
National
Laboratories

Parallel Solution of Optimal Gas
Network Control Under
Uncertainty

Michael Bynum, Larry Biegler, Carl Laird, Sakshi
Naik, Robert Parker, and John Siirola

ENERGY INASA

National Nuclear Security Administration

Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under
contract DE-NA0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering SolutionsfofiSandia,|LLC, alwhollylowned:
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfundercontract DE-NA0003525.

Goal: Minimize compression costs of a natural gas distribution system while satisfying
demands

> 1 Motivation @
I

3 ‘ Optimal Compressor Boost Pressure

50000

40000

30000

20000

Demand (kmol/hr)

10000

—— Target Demand

------ Acutal Demand
—— Boost Pressure
r40

w
o
Boost Pressure (bar)

N
<

[
o

10 15 20 25
Time (hr)

50000 —— Target Demand
------ Acutal Demand
-~ —— Boost Pressure

40000 e 40
= ' E
£)
TE) 30000 30¢
3 2
= £
£ 20000 205
("]
£ [e]
g @

10000 10

0 0 5 10 15 20 250

Time (hr)

50000

40000

Demand (kmol/hr)

100001

Optimal compressor boost pressures depend

heavily on demands.

300001

200001

o

—— Target Demand

------ Acutal Demand

—— Boost Pres

0 5 10 15 20 25

Time (hr)

w
o
Boost Pressure (bar)

N
o

sure

40

=
o

4 ‘ A Stochastic Programming Solution

50000

40000

30000

20000

Demand (kmol/hr)

10000

50000

40000

30000

20000

Demand (kmol/hr)

10000

—— Target Demand
------ Acutal Demand
....... —— Boost Pressure
------ 740
F
2
30 @
3
(2]
0
g
120%
(7]
o
[e]
om
r10
0
0 5 10 15 20 25
Time (hr)
—— Target Demand
------ Acutal Demand
___________ —— Boost Pressure
r40
5
2
r30 @
5
"]
(7]
g
1205
(7]
o
[e]
m
r10
0
0 5 10 15 20 25

Time (hr)

50000 —— Target Demand
------ Acutal Demand
-~ —— Boost Pressure

40000 e 40
= ' E
£)
TE> 30000 30¢
3 2
= g
g 20000 20?;
(%]
£ [e]
g @

10000 10

0 0 5 10 15 20 250
Time (hr)

50000 —— Target Demand
------ Acutal Demand
e ——— Boost Pressure

40000 \— 40
t 5
E 2
TE> 30000 30
£ 2
3 g
E 20000 20?;
(7]
£ [e]
g @

10000 10

0 0 5 10 15 20 250
Time (hr)

50000

40000

Demand (kmol/hr)

100001

50000

40000

Demand (kmol/hr)

10000

300001

200001

—— Target D
------ Acutal D
—— Boost Pri

o

emand
emand
essure
40

w
o

N
o

Boost Pressure (bar)

=
o

0 5 10 15

Time (hr)

300004

200001

20 25

—— Target Demand
------ Acutal Demand
—— Boost Pressure

40

w
o

N
o

Boost Pressure (bar)

10

0 5 10 15
Time (hr)

Zavala, V. M. (2014). Stochastic optimal control model for natural gas networks. Computers & Chemical Engineering, 64, 103-113.

20

25

5 But...

A 2-node network with 32 scenarios takes
1.7 minutes to solve with Ipopt

s | Turn to Parallel Computing

Initialize

Original NLP Gonverged?

Barrier NLP Converged?

Calculate Perivatives,
Residuals, etc.

Calculate Step
Direction

Perform Line Search

Reduce Barrier
Parameter

Parallel approaches have demonstrated tremendous success
on many problems when tailored to the problem class

Need software frameworks to support rapid innovation in
serial and parallel algorithm development

= Rapid development in high-level languages
= Support for block-based representations
= Strong serial and parallel computational performance

Zavala, V. M., Laird, C. D., & Biegler, L. T. (2008). Interior-point decomposition approaches for parallel solution of large-scale nonlinear parameter estimation
problems. Chemical Engineering Science, 63(19), 4834-4845.

7 I PyNumero Overview

truly performant serial and parallel optimization algorithms on distributed HPC

Compiled Code
Python Code

]
PyNumero: A high-level Python framework for rapid development of |

Numpy / SciPy
Vectors and Matrices

Block Vector and
Matrix classes (serial
and parallel)

AsINLP

PyomoNLP

ExternalGreyBox

NLP Interfaces

-
—_
;'_(D
o =
- >
N 0Q
M M
n O

O

Q

PyNumero

: ‘ Parapint Overview

Model
NLP
Partition
Composite o
NLP . Optimization _ Structure-aware
- Algorithm Linear Solvers
Interfaces Structured Vectors, S
Jacobian and Hessian
-Kl Bl- -Avl- -rl- I
MPIBlockVector K, 5| |an| |n
K, Bs . Avs | I

MPIBlockMatrix

KN BN A’UN N
| BI Bf B --- By, Q| | Ad]| |[ra

o | Originally Developed for Dynamic Optimization

z=(uxy)
controls u
algebraics x

states Y

After full-space discretization:
min f(z)
%

s.t. ¢c(z,q) =0

E=E2=F

c(z,q) =

Gz +q1

A 4

— Collocation equations

Gz —q
R(z2)
G+ q

GZne - qne_l

Linking constraints

R(Zne)

[Adapted from L.T. Biegler (2007)]

|

10 § Schur Complements for PinT Optimization

z=wxy)

controls u

algebraics x

states Y

A1

A2

A3

AT

A2T

A3T

c(z,q) =

Gz +q1

\ 4

— Collocation equations

Gz —q
R(z2)
G+ q

GZne - qne _1

Linking constraints

R(Zne)

[Adapted from L.T. Biegler (2007)]

T

11 § Schur Complements for PinT Optimization

z=wxy)

controls u

algebraics x

states Y

A1 A2 A3

AT

A2T

A3T

A4T

e Factor all K; matrices ()

A 4

e Form Schur-complement (= or |)

— Backsolve of each K;

for each nonzero column in A;
to form local Schur-complement S;

e Compute S =) .S; (MPI Reduction)

(T communication)
e Solve SAq =15 (1)
e Solve K;Az; =1; ()

Based on Kang, Cao,
Word and Laird (2014).

[Adapted from L.T. Biegler (2007)]

|

—— Full Space, Serial, Linear Extrapolation
® Full Space, Serial, 1 TB Shared Memory
80004 -+ Parallel Schur-Complement, Distributed Memory

I
2 | Scalability Eﬂ!

“©
~ 6000
£
|_
S Approximately 360x
5 40001 speedup on 1024 cores!
@
2000 -

+ + + + + |

2 4 8 16 32 64 128 256 512 1024
Time Horizon/# of Processes

13 1 A Note on Communication

Dynamic Stochastic Multi-stage | Network-Based
Optimization Optimization stochastic Decomposition
optimization
Schur-
Complement Sparse Dense Sparse Sparse
Structure

Analyze the structure once during symbolic factorization, and exploit it
for performant communication during numeric factorization.

BlockVector/Matrix, MPIBlockVector/Matrix

Efficient block structures are core to PyNumero
o Many algorithms intuitively represented with blocks

o Critical for parallel, block decomposition approaches

PyNumero BlockVector and BlockMatrix classes

Support creation of block-based vectors and
matrices without data duplication

BlockVector and BlockMatrix store C++ pointers to
underlying data structures

Convenient for performing block operations (e.g.,
formation and solution of KKT system)

Support (almost all) standard operations for
Numpy vectors and matrices

Full support to build and interrogate these
structures in both serial and parallel

|

Wi+ Xk + 0,1 Ve(zg)

VC(H’J]‘;)T

=

Kv

I

|

15 | What does the code look like...

Working with matrices and vectors looks just A.dot (x)
like Numpy, and (almost all) Numpy / SciPy X +y
operations are supported - including solvers abs(z) .max()

o
\
|

nlp.set_primals(x)
nlp.set_duals(lam)

grad_lag = (nlp.evaluate_grad_objective() + Interfaces to the NLP classes
nlp.evaluate_jacobian().transpose() * lam) are clean, easy to use, and easy to I
integrate with Numpy and SciPy

residuals = nlp.evaluate_constraints()

jacobian = nlp.evaluate_jacobian()
hessian_lag = nlp.evaluate_hessian_lag()

What does parallel code look like...

BlockVector and BlockMatrix are intuitive comm = MPI..COMM_WORLD
and performant - references stored internally rank = comm.Get_rank()

owners = [2

= BlockVector(3)

.set_block(@, np.random.normal(
.set_block(1, np.random.normal(
.set_block(2, np.random.normal(

x = MPIBlockVector(3 =0wWners =comm)
x.set_block(owners.index(rank), np.random.normal(=3))

y = MPIBlockVector(3 =owners =comm)
= BlockVector(3) y.set_block(owners.index(rank), np.random.normal(=3))

.set_block(@, np.random.normal(
.set_block(1, np.random.normal(
.set_block(3, np.random.normal(

Z1 = x +y
z2=5codot (y)
z3 = np.abs(x).max()

X+y
X.dot(y)

Parallel code can be written at a high level
np.abs(x) .max()

with mpi4py and the PyNumero MPIBlockVector
and MPIBlockMatrix classes

17 ‘ Writing Algorithms: Equality-Constrained SQP Example

SN e | Equality-constrained SQP
kkt BlockMatrix(
rhs Blggkvzcggﬁ(rT]EEtr}()(j
= Makes use of BlockVector /
x = Blockvector(2) BlockMatrix to form KKT, RHS,
x.set_block(®, nlp.init_primals().copy()) . .
x.set_block(1l, nlp.init_duals().copy()) and Iteration vector

, = BlockMatrix sent directly to the
linear_solver = MA27Interface() .
linear_solver.set_cntl() linear solver

= BlockMatrix efficiently stores
_iter range(max_iter):

nlp.set_primals(x.get_block(0)) pOinterS to sub-blocks
nlp.set_duals(x.get_block(1))

grad_lag = (nlp.evaluate_grad_objective() +
nlp.evaluate_jacobian().transpose() * x.get_block(1))
residuals = nlp.evaluate_constraints()

np.abs(grad_lag).max() <= tol np.abs(residuals).max() <= tol:

kkt.set_block(nlp.evaluate_hessian_lag())
kkt.set_block(nlp.evaluate_jacobian())

kkt.set_block(nlp.evaluate_jacobian().transpose())

rhs.set_block(@, grad_lag) I
rhs.set_block(1l, residuals)

linear_solver.do_symbolic_factorization(kkt)
linear_solver.do_numeric_factorization(kkt)
delta = linear_solver.do_back_solve(-rhs)

X += delta

What about performance?

SO s 0, totea: Equality-constrained SQP
= BlockMatrix()
I:EE — g{ocweztor() methOd
= Makes use of BlockVector /
x = BlockVector(2) BlockMatrix to form KKT, RHS,

x.set_block(®, nlp.init_primals().copy()) . .
x.set_block(1l, nlp.init_duals().copy()) and Iteration vector

, BlockMatrix sent directly to the
linear_solver = MA27Interface() .
linear_solver.set_cntl() linear solver

BlockMatrix efficiently stores

_iter (max_iter):

nlp.set_primals(x.get_block(0)) pOinterS to sub-blocks

nlp.set_duals(x.get_block(1))
grad_lag = (nlp.evaluate_grad_objt(egtive() + 0) Performance Compared Wlth
1p. luate_j bi ot .get_block .
residuals = glg.g::lﬂ:t:jgﬁgtll“gri]nts()ranspose T ee e IPO PT (fU”y Comp||Ed C++)
np.abs(grad_lag).max() <= tol np.abs(residuals).max() <= tol: Discretized PDE control prOblem
(Burgers)
kkt. block 1p. 1 h i 1 . .
kkE;:EZblgﬁkE 2132321335:]3?3&?25(??”’ PyNumero ESQP within 15% of
kkt.set_block(nlp.evaluate_jacobian().transpose()) IPOPT on reasonable problems
rhs.set_block(0, grad_lag) (100,000 vars, ~2 sec)
rhs.set_block(1l, residuals) .
linear_solver.do_symbolic_factorization(kkt) PyNume.rO dlreCtly Comparable
1inear_so1..ver.do_numeric_factorization(kkt) tO Comp||Ed C++ When the
delta = linear_solver.do_back_solve(-rhs) problem iS SUfﬂCientIy Iarge.

X += delta

I
19 1 With Parapint... @!

A 2-node network with 32 scenarios takes
6.7 seconds to solve with Parapint and 16
processes |

0 1| Remarks and Future Work

Remarks:

Schur-Complement decomposition provides a scalable solution approach for stochastic optimal control
of gas pipeline networks

PyNumero provides a flexible, high-level Python framework for creating nonlinear optimization solvers
PyNumero designed to facilitate rapid innovation in parallel algorithm development

Full support for block representations of linear algebra

Intuitive interface for NLP and algorithm creation with support for Numpy and SciPy

Interfaces to commonly used linear solvers for NLP algorithms (SciPy, Mumps, HSL)

Computationally expensive operations performed with compiled code

Great scalability to over 1000 cores!

Future work

Improved robustness of Parapint’s interior point algorithm
More algorithms!

Combined scenario and time decomposition for stochastic optimal control via nested Schur-
Complement

> I Acknowledgements

This work was conducted as part of the Institute for the Design of Advanced Energy Systems
(IDAES) with funding from the Office of Fossil Energy, Cross-Cutting Research, U.S.
Department of Energy.

Disclaimer: This presentation was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or usefulness of anly
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not |

necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed

herein do not necessarily state or reflect those of the United States Government or any
agency thereof.

Sandia National Laboratories is a multi-mission laboratory managed and operated by I
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of |

Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NAOO03525.

