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Non-aqueous Flow Battery Chemistries

Why non-aqueous?

Low concentration of electroactive species
Viscosity

Expensive and toxic solvents

Poorly performing membrane/separators

Wider voltage window

Higher charge cycle efficiency

Decreased temperature sensitivity
Increased cycle life

Degradation mechanisms well understood

Why not?



Examples of non-aqueous flow battery chemistries
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T. A. Palmer et al. ChemSusChem, 2021, 14, 1214-1228.




~__Non-aqueous Flow Batteries

Project Goal: Build a better flow battery* by targeting (1) Energy Density (2) Materials Cost (3) Mechanisms of
Capacity Fade

‘Energy Densityg, = 72nFV ,C

active

ED,, = %1F1.5_,2

cell=active

= 1.5F

ED, .., = 722F2 3 = 6.0F Low-Cost Materials Viscosity s&

cell~active
EDI\/IacI\/I = VZZcmeIIO'lactive =0.2F
EDgegrare = 721F3 0 Sactive = 7-5F High Energy Density

Surface Area Kinetics s

UL *>4.4 mol e /L according to Darling et al., Energy Environ. Sci., 2014, 7, 3459-3477.




Non-aqueous Iron-Organic Flow Batteries

ED,, .. = %2F2.2_,,0.2

active = 0.4F Low-Cost Materials Crossover s«

First Generation redox reactions (2.26 V) e
Posolyte: Fe(bpy),(BF,), = Fe(bpy);(BF,); + e
Negolyte: Ni(bpy),(BF,), + 2 e = Ni(bpy)s(BF,),

1.0 -

0.5+

0.0 -

Second Generation (symmetric) all-iron
battery minimizes issues with crossover

Current Density (mA cm™)

-0.5-

and utilizes non-innocent ligands. S
| | Pote.ntial (V). VS. Agll:\gCI | |

Next Generation Lower Symmetry, Higher Solubility

ED MCC — = 7%2F2. 6celllactive = 2.6F

fl'l (1) Mun, Lee, Park, Oh, Lee, & Doo, Electrochem. Solid-State Lett., 2012, 6, A80-A82 (2) Mn, Oh, Park, Kwon, Kim, Jeong,
Kim, & Lee, J. Electrochem. Soc., 2018, 165, A215-A219 (3) Hogue & Toghill, Curr. Op. Electrochem., 2019, 18, 37-45. =




(bpy)s(BF,), Optimization

* Test materials and parameters
* Membrane: Fumasep FAP-450 anion exchange membrane
* Solvents: propylene carbonate and acetonitrile
* Electrolyte Salts: TEA-BF, , TBA-OTf, TBA-TFSI, TBA-BF, , and TBA-PF,
* 0.5 M electrolyte salt + 0.2 M Fe(Bipy),(BF,),
Argon glovebox
Graphite blocks/carbon felt
3 mL/min flow rate
20 cycles at 10 mA cm™




(bpy)s(BF,4), Optimization

Varied supporting electrolyte to observe

performance

* TEA*is superior to TBA*

* BF, is asuperior anion

e Little crossover observed, but a common
by-product forms upon cycling

* Found a relationship between capacity
fade and by-product formation

* Negolyte ligand shedding, crossover, BF,
hydrolysis, followed by nucleophilic attack

* 15-20% improvement in performance
when extra drying measures and higher
purity precursors were used
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Mechanism of Symmetrlc Fe(bpy);(BF,)
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Ligand shedding, posilyte BF, crossover and hydrolysis, followed by nucleophilic
attack.

Final product was confirmed by MS

“Mechanistic studies (e.g., molecular dynamics, decompositions, and electrode-
solution interface) are essential as they can gain insights into this complex battery
system and may inspire crucial factors that revolutionize control of key
physicochemical properties.”



Tuning Bipyridine Ligands

Goal: produce a higher voltage symmetric RFB using inorganic synthesis and fundamentals of

coordination complex chemistry
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C. X. Cammack et al. Dalton Trans., 2021, 50, 858-868.




Synthesis of the Substituted Bipyridine Ligands

thanol
Fe(BF,), 6H,0  + 3R- ——12 5 Fe(bpyR),(BF,),

“ * High yields using earth abundant precursors
SRRET * Purity was confirmed by proton NMR (also
ANNESENANL N | provides information about structural integrity
o INIY I | during battery cycling)

 EWGs shift resonances downfield as expected
(and vice-versa EDGs shift resonances upfield)
\/\ - e UV-Vis data suggest the bpy ligands maintain

bpyCF,

their highly conjugated electronic structure
(required for the voltage separation needed for

L\/\ the symmetric RFB)
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Molar Absorptivity (10° M'cm™)




Ligand Effects on Redox Potentials

Normalized Current

Current Density (mA cm?)
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Fe(bpyCF;);(BF,), 1.65 -0.63 2.28
Fe(bpyCO,Me);(BF,), 1.53 -0.68 2.21
Fe(bpyBr);(BF,), 1.43
Fe(bpy),(BF,), 1.25 1.12 2.37
Fe(bpy'Bu),(BF,), 1.09 -1.19 2.28
Fe(bpyMe),(BF,), 1.07 1.25 2.32
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Fe(bpyNH, ), (BF.,), 0.43
— - -
Fe(ll)/ ligand voltage
gap

Inductive effects change ease oxidation of Fe(ll)
EWGs shifted positively by up to 0.4 V
EDGs shifted negatively by up to 0.8 V
Fe(ll) and ligand-centered redox shifted together
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Substituted Fe(bpyR);(BF,), in Symmetric RFBs

* Analyzed the effect substituents on bpy have on
cycling in a RFB

* The most EWG and EDG were compared to the
unsubstituted Fe(bpy),

* The unsubstituted showed greatest cycling
stability, followed by the EDG (-OMe), then the
EWG (-CF,)

* Capacity fade (& electrochemical yield inset)
* Negolyte degradation due to ligand shedding
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The negolyte is unstable. How can we fix it? Pseudo-symmetric flow batteries!
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Why Pseudo-Symmetric?

B wnN e

More stable under highly reducing conditions
Coordinatively unsaturated complex can catalyze unwanted reactions

Free ligand is more tunable (synthetically)

Improve atom economy

S = solvent

This entire portion of the molecule is
not being used in the anode.

R= CF3, OMe

Posolyte Negolyte

Pseudo-symmetric flow batteries will
have metal-free negolytes.

13



First Generation Pseudo-Symmetric Flow Cell Studies
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The second generation negolyte has a
methylated nitrogen. The literature
shows this significantly improves the

electrochemistry.
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The methylated, OMe derivative showed improved cycling over first generation but poor material utilization.
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Mechanism of Second Generation Capacity Fade

Significant degradation was observed in the first cycle, forming various by-products.
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Third Generation Pseudo-Symmetric Flow Cell

The r%tH/dtlﬁscO derivative showed an 18% improvement of material utilization over second generation.
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Bipolar Redox Molecules (BRMs)

N-ferrocenylphthalimides
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(1) Li, Case, and Minteer, ChemElectroChem, 2021, 8, 1215-1232 (2) Hwang, Kim, Ryu, and Oh, J. Power Sources, 2018,
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Conclusions

We have identified (and mitigated) the mechanism for capacity fade in the
symmetric iron-bipyridine flow battery.

We have determined that chemical substitutions can be made in MCCs to increase
voltage, but this can decrease the overall stability of the system.

We have determined that this stability is primarily centered around the negolyte
and identified (and executed) a path forward involving a pseudo-symmetric
system.

The negolytes of pseudo-symmetric flow batteries can be stabilized with chemical
modifications.
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