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MULTIFIDELITY UQ IN RADIATION TRANSPORT AND STOCHASTIC MEDIA
PLAN OF THE TALK

MOTIVATION AND BACKGROUND

MF UQ FOR MC RT (W/ STOCHASTIC MEDIA)

NUMERICAL RESULTS

CLOSING REMARKS
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Motivation and background



UNCERTAINTY QUANTIFICATION FOR RADIATION TRANSPORT
CONTEXT AND CHALLENGES

  

Figure: Courtesy of Brian Franke and Shawn Pautz

High-fidelity state-of-the-art modeling and simulations with HPC

UQ under severe simulations budget constraints

Significant dimensionality driven by model complexity
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UNCERTAINTY QUANTIFICATION FOR RADIATION TRANSPORT
FORWARD MF UQ WITH MONTE CARLO RT SOLVERS

Few considerations on (MF) UQ for MC RT

MC RT simulations are expensive → MF sampling UQ to reduce the computational cost

MF UQ approaches require correlation among models

MC RT are truly stochastic solvers → significant correlation can be obtained only by collecting a large number of
particle histories (for accurate MC RT computations O(103 − 109))

The MC RT cost increases with # of particle histories → we need to be able to estimate/treat the residual noise

Figure: Courtesy of Kayla Clements.

MC RT from the physics/algorithmic perspective:

STEP 1: Use nuclear data to sample distance-to-collision event

STEP 2: Sample collision events based on cross section values

STEP 3: Track particle until it leaves the system

STEP 4: Evaluate QoIs, e.g. transmittance (# particles passing through the system)
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UQ FOR MC RT
SAMPLING-BASED APPROACHES

MC RT from the UQ perspective:

Uncertain parameters, e.g. cross sections: ξ ∈ Ξ ⊂ Rd

MC RT (internal) randomness: η ∈ H ⊂ Rd′

Particle histories are interpreted as elementary events: f = f (ξ, η)

MC RT QoI: Average of f over the histories for a fixed UQ parameters realization

Q(ξ) = Eη [f (ξ, η)]
MC RT
≈

1
Nη

Nη∑
j=1

f
(
ξ, η

(j)
)

def
= Q̃Nη (ξ)

UQ GOAL: Compute statistics for Q(ξ), e.g mean E [Q] and Var [Q], via sampling

Here, we focus on the MF UQ mean estimator1

Challenge: Q(ξ) is inaccessible: we can only observe Q̃Nη (ξ)

1Kayla C. Clements, G. Geraci, and Aaron J. Olson. “A Variance Deconvolution Approach to Sampling Uncertainty Quantification for Monte Carlo Radiation Transport
Solvers”. In: Computer Science Research Institute Summer Proceedings 2021. Technical Report SAND2022-0653R. 2021, pp. 293–307.
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MC RT FOR STOCHASTIC MEDIA
STOCHASTIC MEDIA IN RADIATION TRANSPORT

Stochastic media: materials whose internal structure is treated as random

Real-world examples

Two-phase flow in Boiling Water Reactor nuclear power coolant (1)

Pebble distribution in Pebble-Bed nuclear power reactors (2)

Distribution of TRISO fuel particles in Pebble-Bed pebble (3)

Raleigh-Taylor instabilities in Inertial Confinement Fusion reactors

Accident scenarios in various nuclear power reactor cores

Numerical approximations

Spherical inclusions (4)

Gaussian process (5)

Markovian/Poisson (6)
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MC RT FOR STOCHASTIC MEDIA
SAMPLING-BASED APPROACHES

MC RT (+ stochastic media) from the UQ perspective:

Uncertain parameters, e.g. cross sections: ξ ∈ Ξ ⊂ Rd

MC RT (internal) randomness: η ∈ H ⊂ Rd′

Material arrangements/realizations: ω ∈ Ω ⊂ Rd′′

Particle histories are interpreted as elementary events: f = f (ξ, ω, η)

MC RT QoI: Average of f over the histories with fixed UQ parameters realization and material arrangements

Q(ξ, ω) = Eη [f (ξ, ω, η)]
MC RT
≈

1
Nη

Nη∑
j=1

f
(
ξ, ω, η

(j)
)

def
= Q̃Nη (ξ, ω)

We are interested in the statistics (i.e. mean) for the following quantity

PE(ξ)
def
= Eω [Q(ξ, ω)] −→ Eξ [PE(ξ)]
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MF UQ for MC RT (W/ stochastic media)



MF UQ FORMULATION
SINGLE FIDELITY MC AND NOTATION

We want to compute

Eξ [PE] ≈
1

Nξ

Nξ∑
i=1

PE(ξ
(i)

)

where

PE(ξ
(i)

)
def
= Eω

[
Q(ξ

(i)
, ω)
]
≈

1
Nω

Nω∑
k=1

Q(ξ
(i)
, ω

(k)
)

and

Q(ξ
(i)
, ω

(k)
)

def
= Eη

[
f (ξ(i)

, ω
(k)
, η)
]
≈

1
Nη

Nη∑
j=1

f (ξ(i)
, ω

(k)
, η

(j)
)

def
= Q̃Nη (ξ

(i)
, ω

(k)
)

Let’s now use these definitions in reverse order

PE(ξ
(i)

) ≈
1

Nω

Nω∑
k=1

Q̃Nη (ξ
(i)
, ω

(k)
)

def
= P̃E

Nω (ξ
(i)

)

and, finally

Eξ [PE] ≈
1

Nξ

Nξ∑
i=1

P̃E
Nω (ξ

(i)
)

def
= 〈PE〉Nξ
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MF UQ FORMULATION
CONTROL VARIATE / MFMC / ACV FORMULATION

Let’s consider a two-model MF UQ estimator

Eξ [PE] ≈
〈
PHF
E

〉
Nξ

+ α

(〈
PLF
E

〉
Nξ
−
〈
PLF
E

〉
r̃Nξ

)
def
= 〈PE〉MF

Nξ

The variance of this estimator is2

Var
[
〈PE〉MF

Nξ

]
= Var

[〈
PHF
E

〉
Nξ

](
1−

r̃− 1
r̃

ρ̃
2
)
,

where

r̃ =

√
ρ̃2

1− ρ̃2

C̃HF

C̃LF

Remarks:

The estimator variance Var

[〈
PHF
E

〉
Nξ

]
depends on Nξ,Nω and Nη

All quantities denoted by ·̃ are polluted by the finite number of samples Nω and Nη

2L.W.T. Ng and K. Willcox. “Multifidelity Approaches for Optimization Under Uncertainty”. In: Int. J. Numer. Meth. Engng 10 (2014), pp. 746–772.
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MF UQ FORMULATION
ROADMAP

Q: How do we obtain an optimal MF UQ estimator for these problems?

Roadmap

STEP 1: Understand Var

[〈
PHF
E

〉
Nξ

]
dependence on Nξ,Nω and Nη

STEP 2: Take into account ρ̃2 dependence on Nω and Nη

STEP 3: Introduce cost models C̃HF and C̃LF

STEP 4: Take into account r̃ dependence on Nω and Nη
STEP 5: Quantify MF UQ estimator efficiency w.r.t MC
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MF UQ FORMULATION
SINGLE FIDELITY POLLUTED VARIANCE

Var
[
P̃E

Nω

]
= Varξ [PE]︸ ︷︷ ︸

Parametric variance

+Eξ
[Varω [Q(ξ, ω)]

Nω

]
︸ ︷︷ ︸

Stochastic media

+Eξ

Eω
[
σ2
η(ξ, ω)

]
NηNω


︸ ︷︷ ︸

MC RT

Remarks3

Polluted quantities are the only ones we can directly measure

Variance deconvolution: remove noise from polluted variance Var
[
P̃E

Nω

]
Varω [Q(ξ, ω)] is also inaccessible, this requires another variance deconvolution

MC RT contribution is
σ

2
η(ξ, ω) = Varη [f (ξ, ω, η)]

3G. Geraci and Aaron J. Olson. “Deconvolution strategies for efficient parametric variance estimation in stochastic media transport problems”. In: ANS Transactions (2022),
pp. 279–282.
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MF UQ FORMULATION
POLLUTED CORRELATION

Link between the polluted correlation ρ̃2 and ρ2

ρ̃
2

=
ρ2

1 + τρ2

where

τ = Varξ
[
PHF
E

]
γLF(NLF

ω ,N
LF
η ) + Varξ

[
PLF
E

]
γHF(NHF

ω ,NHF
η ) + γHF(NHF

ω ,NHF
η )γLF(NLF

ω ,N
LF
η )

represents the stochastic solver noise effect, which decreases ρ2
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MF UQ FORMULATION
INTRODUCING A REALISTIC MODEL COST

Let’s introduce a cost model

We account for the re-sampling cost, i.e. sampling more time the same configuration is less expensive

We consider three nested operations

UQ configuration Cξ
Stochastic media arrangement Cω
Particle histories Cη

A single fidelity estimator will have a total cost of

Ctot = NξCξ + Nξ (CωNω + CηNωNη)

= NξC̃(Nω,Nη), where C̃(Nω,Nη) = Cξ + (CωNω + CηNωNη)

For a deterministic solver

C̃(1, 1) = Cξ + Cω + Cη
def
= C
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Ctot = NξCξ + Nξ (CωNω + CηNωNη)

= NξC̃(Nω,Nη), where C̃(Nω,Nη) = Cξ + (CωNω + CηNωNη)

For a deterministic solver

C̃(1, 1) = Cξ + Cω + Cη
def
= C
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MF UQ FORMULATION
ROADMAP

Roadmap

STEP 1: Understand Var

[〈
PHF
E

〉
Nξ

]
dependence on Nξ,Nω and Nη

STEP 2: Take into account ρ̃2 dependence on Nω and Nη

STEP 3: Introduce cost models C̃HF and C̃LF

STEP 4: Take into account r̃ dependence on Nω and Nη
STEP 5: Quantify MF UQ estimator efficiency w.r.t MC
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MF UQ FORMULATION
SAMPLE ALLOCATION FOR MC RT SOLVERS

Optimal oversampling ratio: r̃ =

√
ρ̃2

1− ρ̃2

C̃HF

C̃LF

Let’s introduce the polluted terms ρ̃2, C̃HF and C̃LF (generalization of4)

C̃HF = CHF
ξ + CHF

ω NHF
ω + CHF

η NHF
ω NHF

η = CHF
ξ + CHF

ω,η(NHF
ω ,NHF

η )

C̃LF = CLF
ξ + CLF

ω NLF
ω + CLF

η NLF
ω NLF

η = CLF
ξ + CLF

ω,η(NLF
ω ,N

LF
η )

r̃ =

√
ρ2

1− ρ2

CHF

CLF︸ ︷︷ ︸
r: unpolluted oversampling ratio

√√√√√√ 1− ρ2

1− ρ2 + τρ2

1−
CHF
ω +CHF

η
CHF

+
CHF
ω,η
CHF

1−
CLF
ω +CLF

η
CLF

+
CLF
ω,η
CLF︸ ︷︷ ︸

R(NHF
ω ,NHF

η ,NLF
ω ,NLF

η ): stochastic solver contribution

4G. Geraci, L.P. Swiler, and B.J. Debusschere. “Multifidelity UQ Sampling for Stochastic Simulations”. In: 16th U.S. National Congress on Computational Mechanics (2021).
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Numerical results



RADIATION TRANSPORT
1D TRANSPORT IN STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES

1D slab, neutral particle, absorption-only mono-energetic steady state radiation transport

Normally incident beam with unitary magnitude

Random cross sections (m = A,B): Σt,m(ξm) = Σ0
t,m + Σ∆

t,mξm, where ξA, ξB ∼ U(−1, 1)

The QoI is the transmittance

Analytical solution:

Transmittance: T(ξ, ω) = exp [−τ(ξ, ω)] , where

Slab optical thickness: τ(ξ, ω) = ∆x
(
NA(ω)Σt,A(ξA) + NB(ω)Σt,B(ξB)

)
NOTE: NA(ω) ∼ B(Ntot,PA), where NA(ω) + NB(ω) = Ntot
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1D MC RT FOR STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES
MULTIFIDELITY ANALYSIS SCENARIO

Material Σ0
t,m [cm−1] Σ∆

t,m [cm−1] pm
A 1.0 0.95 0.3
B 0.4 0.25 0.7

TABLE: Material properties

Model Ntot ∆x [cm] Cξ Cω Cη C
HF 50 1.0 1.0 0.5 0.01 1.51
LF 10 5.0 0.02 0.01 0.001 0.031

TABLE: Model configuration – CHF/CLF = 48.71

Two analysis scenarios:

First – HF dataset assigned, i.e. NHF
ω and NHF

η are assigned

Second – Stochastic media configurations assigned for both models, i.e. NHF
ω and NLF

ω are assigned
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NUMERICAL RESULTS
COST REDUCTION COMPARED TO MC (3D VIEW)

Scenario 1: HF dataset assigned – NHF
ω = 10 and NHF

η = 15 Scenario 2: Stoch media assigned – NHF
ω = 10 and NLF

ω = 25
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NUMERICAL RESULTS
COST REDUCTION COMPARED TO MC (CONTOUR PLOT)

Scenario 1: HF dataset assigned – NHF
ω = 10 and NHF

η = 15 Scenario 2: Stoch media assigned – NHF
ω = 10 and NLF

ω = 25
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Closing remarks



CLOSING REMARKS
WORK-IN-PROGRESS

Summary

Radiation transport methods can benefit from MF UQ

Deploying MF UQ for stochastic solvers is more challenging than for deterministic solvers

Stochastic noise needs to be optimally controlled to preserve MF UQ performance

Talk’s contributions

Formulation for MF UQ applied to MC RT problems

Stochastic media effect explicitly included

Cost model extended to include re-sampling cost

Verification exact solution for MF UQ with binary mixing

Next steps

Extension to a realistic deployment (from pilot samples to statistics estimation)

Extension to multiple models (e.g. leveraging Approximate Control Variate5, etc.)

Extension to high-order statistics

5A. Gorodetsky et al. “A generalized approximate control variate framework for multifidelity uncertainty quantification”. In: Journal of Computational Physics 408 (2020).
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MF UQ FORMULATION
SINGLE FIDELITY POLLUTED VARIANCE (ADDITIONAL DETAILS)

Var

[〈
PHF
E

〉
Nξ

]
= Var

 1
Nξ

Nξ∑
i=1

P̃E,HF
Nω

(ξ
(i)

)

 =
1

Nξ
Var

[
P̃E,HF

Nω

]
Law-of-total variance

Var
[
P̃E,HF

Nω

]
= Varξ

[
Eη,ω

[
P̃E,HF

Nω

]]
+ Eξ

[
Varη,ω

[
P̃E,HF

Nω

]]
By applying, once again, the law-of-total variance we get

Varη,ω
[
P̃E

Nω

]
=

Varω [Q(ξ, ω)]

Nω
+

Eω
[
σ2
η(ξ, ω)

]
NωNη

which leads to the final estimator variance

Var
[
P̃E

Nω

]
= Varξ [PE] + Eξ

[Varω [Q(ξ, ω)]

Nω

]
+ Eξ

Eω
[
σ2

RT,Nη (ξ, ω)
]

Nω


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MF UQ FORMULATION
POLLUTED CORRELATION (ADDITIONAL DETAILS)

ρ̃
2

=
Cov2

(
P̃E,HF

Nω
, P̃E,LF

Nω

)
Var

[
P̃E,HF

Nω

]
Var

[
P̃E,LF

Nω

]
Properties:

Law-of-total covariance: Cov
[
P̃E,HF

Nω
, P̃E,LF

Nω

]
= Eξ

[
Covω,η

[
P̃E,HF

Nω
, P̃E,LF

Nω

]]
+ Covξ

[
Eξ,ω

[
P̃E,HF

Nω

]
,Eξ,ω

[
P̃E,LF

Nω

]]
All estimators are unbiased, e.g. Eω

[
P̃E,HF

Nω

]
= PHF

E

ω and η for HF and LF variables are independent

ρ̃
2

=

(
Covξ

[
PHF
E , PLF

E

])2(
Varξ

[
PHF
E

]
+ γHF(NHF

ω ,NHF
η )

) (
Varξ

[
PLF
E

]
+ γLF(NLF

ω ,NLF
η )
)

γHF = Eξ

Varω
[
QHF(ξ, ω)

]
NHF
ω

 + Eξ

 Eω
[
σ2
η(ξ, ω)

]
NHF
ω NHF

η


γLF = Eξ

Varω
[
QLF(ξ, ω)

]
NLF
ω

 + Eξ

 Eω
[
σ2
η(ξ, ω)

]
NLF
ω NLF

η


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MF UQ FORMULATION
MF ESTIMATOR EFFICIENCY W.R.T MC (1/2)

Cost ratio w.r.t. MC for same estimator variance ε2
target

MF UQ cost allocation

NMF
ξ =

Var
[
P̃E,HF

Nω

]
(NHF
ω ,NHF

η )

ε2
target

(
1−

rR− 1

rR

ρ2

1 + τρ2

)

CMF
tot = NMF

ξ C̃HF + NMF
ξ rRC̃LF

= NMF
ξ CHF

1−
CHF
ω + CHF

η

CHF
+
CHF
ω,η

CHF

 + rR
CLF

CHF

1−
CLF
ω + CLF

η

CLF
+
CLF
ω,η

CLF


MC cost allocation

NMC
ξ =

Var
[
P̃E,HF

Nω

]
(NHF
ω ,NHF

η )

ε2
target

CMC
tot = NMC

ξ C̃HF = NMC
ξ CHF

1−
CHF
ω + CHF

η

CHF
+
CHF
ω,η

CHF


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MF UQ FORMULATION
MF ESTIMATOR EFFICIENCY W.R.T MC (2/2)

First analysis scenario – same averaging for HF

Θ
def
=

CMF
tot (NMF

ξ ,NHF
ω ,NHF

η ,NLF
ω ,N

LF
η )

CMC
tot (NMC

ξ ,NHF
ω ,NHF

η )
=

(
1−

rR− 1
rR

ρ̃
2
)1 + rR

CLF

CHF

1−
CLF
ω +CLF

η
CLF

+
CLF
ω,η
CLF

1−
CHF
ω +CHF

η
CHF

+
CHF
ω,η
CHF



Second analysis scenario – NHF
ω = 1 and NHF

η = 1 for MC

Θ
I def

=
CMF

tot (NMF
ξ ,NHF

ω ,NHF
η ,NLF

ω ,N
LF
η )

CMC
tot (NMC

ξ ,NHF
ω = 1,NHF

η = 1)

=
Var

[
P̃E,HF

Nω

]
(NHF
ω ,NHF

η )

Var
[
P̃E,HF

Nω

]
(NHF
ω = 1,NHF

η = 1)

(
1−

rR− 1
rR

ρ̃
2
)(

1−
CHF
ω + CHF

η

CHF
+
CHF
ω,η

CHF

)1 + rR
CLF

CHF

1−
CHF
ω +CHF

η
CHF

+
CHF
ω,η
CHF

1−
CLF
ω +CLF

η
CLF

+
CLF
ω,η
CLF



=

Varξ
[
PHF
E

]
+ Eξ

[
Varω

[
QHF(ξ,ω)

]
NHF
ω

]
+ Eξ

[
Eω
[
σ2
η(ξ,ω)

]
NHF
ω NHF

η

]
Varξ

[
PHF
E
]

+ Eξ [Varω [QHF(ξ, ω)]] + Eξ
[
Eω
[
σ2
η(ξ, ω)

]] (1−
CHF
ω + CHF

η

CHF
+
CHF
ω,η

CHF

)
Θ

MFUQ for Radiation Transport with Stochastic Media 18/18



MF UQ FORMULATION
MF ESTIMATOR EFFICIENCY W.R.T MC (2/2)
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1D MC RT FOR STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES
SUMMARY OF THE UQ EXACT SOLUTION (1/2)

Derived all terms needed for closed-form variance Varξ [PE]
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Summary of the Cov derivation
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1D MC RT FOR STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES
SUMMARY OF THE UQ EXACT SOLUTION (2/2)
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NUMERICAL RESULTS
SCENARIO 1: HF DATASET ASSIGNED – NHF

ω = 10 AND NHF
η = 15 – COST RATIO (1/2)

Scenario 1
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NUMERICAL RESULTS
SCENARIO 1: HF DATASET ASSIGNED – NHF

ω = 10 AND NHF
η = 15 – CORRELATION/ALLOCATION

r ≈ 54.32
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NUMERICAL RESULTS
SCENARIO 2: STOCHASTIC MEDIA ASSIGNED – NHF

ω = 10 AND NLF
ω = 25 – COST RATIO (1/2)

Scenario 2
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NUMERICAL RESULTS
SCENARIO 2: STOCHASTIC MEDIA ASSIGNED – NHF

ω = 10 AND NLF
ω = 25 – COST RATIO (1/2)
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