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MULTIFIDELITY UQ IN RADIATION TRANSPORT AND STOCHASTIC MEDIA
PLAN OF THE TALK

@ MOTIVATION AND BACKGROUND

@ MF UQ FOR MC RT (W/ STOCHASTIC MEDIA)

@ NUMERICAL RESULTS

@ CLOSING REMARKS

MFUQ for Radiation Transport with Stochastic Media 1/18 J



Motivation and background




UNCERTAINTY QUANTIFICATION FOR RADIATION TRANSPORT
CONTEXT AND CHALLENGES
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Figure: Courtesy of Brian Franke and Shawn Pautz

High-fidelity state-of-the-art modeling and simulations with HPC

@ UQ under severe simulations budget constraints
@_ Significant dimensionality driven by model complexity
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UNCERTAINTY QUANTIFICATION FOR RADIATION TRANSPORT
FORWARD MF UQ WITH MONTE CARLO RT SOLVERS

Few considerations on (MF) UQ for MC RT
@ MC RT simulations are expensive — MF sampling UQ to reduce the computational cost
@ MF UQ approaches require correlation among models
@ MC RT are truly stochastic solvers — significant correlation can be obtained only by collecting a large number of
particle histories (for accurate MC RT computations O(10° — 10°))
@ The MC RT cost increases with # of particle histories — we need to be able to estimate/treat the residual noise
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UNCERTAINTY QUANTIFICATION FOR RADIATION TRANSPORT
FORWARD MF UQ WITH MONTE CARLO RT SOLVERS

Few considerations on (MF) UQ for MC RT

MC RT from the physics/algorithmic perspective:
STEP 1:
STEP 2:
STEP 3:
STEP 4: Evaluate Qols, e.g. transmittance (# particles passing through the system)

MFUQ for Radiation Transport with Stochastic Media

MC RT simulations are expensive — MF sampling UQ to reduce the computational cost

MF UQ approaches require correlation among models

MC RT are truly stochastic solvers — significant correlation can be obtained only by collecting a large number of
particle histories (for accurate MC RT computations O(10° — 10°))

The MC RT cost increases with # of particle histories — we need to be able to estimate/treat the residual noise

O

Streaming
Particle

Figure: Courtesy of Kayla Clements.

Use nuclear data to sample distance-to-collision event
Sample collision events based on cross section values
Track particle until it leaves the system
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UQ FOR MC RT

SAMPLING-BASED APPROACHES

MC RT from the UQ perspective:

@_ Uncertain parameters, e.g. cross sections: £ € = C R?

@ MC RT (internal) randomness: n € H C RY
@_ Particle histories are interpreted as elementary events: [ = f(&, )

@ MC RT Qol: Average of f over the histories for a fixed UQ parameters realization

N,
1 S\ def x
Q) =By e 1 & 1= 37 (609) ¥ Qw, ()
n =1

UQ GOAL: Compute statistics for (&), e.g mean E [Q] and Var [@], via sampling

Here, we focus on the MF UQ mean estimator?

Challenge: Q(€) is inaccessible: we can only observe QNW €3]

1Ke\yla C. Clements, G. Geraci, and Aaron J. Olson. “A Variance Deconvolution Approach to Sampling Uncertainty Quantification for Monte Carlo Radiation Transport
Solvers”. In: Computer Science Research Institute Summer Proceedings 2021. Technical Report SAND2022-0653R. 2021, pp. 293-307.
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MC RT FOR STOCHASTIC MEDIA
STOCHASTIC MEDIA IN RADIATION TRANSPORT

Stochastic media: materials whose internal structure is treated as random

Real-world examples Numerical approximations

@_ Two-phase flow in Boiling Water Reactor nuclear power coolant (1) @_ Spherical inclusions (4)
@_ Pebble distribution in Pebble-Bed nuclear power reactors (2) @_ Gaussian process (5)

@_ Distribution of TRISO fuel particles in Pebble-Bed pebble (3) @_ Markovian/Poisson (6)
@_ Raleigh-Taylor instabilities in Inertial Confinement Fusion reactors

)

Accident scenarios in various nuclear power reactor cores
1

)
L r
2 (d,,,, ’"pury
¥ - ona[,tw
o= \’\*OF T

1D Markovian geometry - Material type |
forms continuous Markov process

1D “Cell” geometry - Cell boundaries
uniform, but material fill random
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MC RT FOR STOCHASTIC MEDIA
SAMPLING-BASED APPROACHES

MC RT (+ stochastic media) from the UQ perspective:
@_ Uncertain parameters, e.g. cross sections: £ € = C R?
@ MC RT (internal) randomness: n € H C RY
Material arrangements/realizations: w € Q C R
Particle histories are interpreted as elementary events: f = (&, w, n)

MC RT Qol: Average of f over the histories with fixed UQ parameters realization and material arrangements

7]
Qe.w) =B, [f(ew.m) & 7y 2 (60n”) E o, €0
77

We are interested in the statistics (i.e. mean) for the following quantity

def

Pe(€) = Eo [Q(€, w)] — | Ee [P=(£)]
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MF U©Q for MC RT (W/ stochastic media)




MF UQ FORMULATION
SINGLE FIDELITY MC AND NOTATION

We want to compute

¢ [Pe) ~ ZP ")
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MF UQ FORMULATION
SINGLE FIDELITY MC AND NOTATION

We want to compute

¢ [Pe] ~ ZP ()
where

Pe(¢?) ¥EL [QED, )] ~ ZQ(&") w®)

wkl
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MF UQ FORMULATION
SINGLE FIDELITY MC AND NOTATION

We want to compute

¢ [Pe) ~ ZP ")

where
Pe(c?) TR, [QED,w)] ~ wZQ(&") w®)
and -
Qe w®) Er, [£(V,w® . m)] ~ n;f(s(” w® . 50) = Qu,
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MF UQ FORMULATION
SINGLE FIDELITY MC AND NOTATION

We want to compute

¢ [Pe] ~ ZP ()
where
Po(e) ¥R [Q W] & LS,
and -

Qe ™) EE, [, 0™ n

Let's now use these definitions in reverse order

]~

Zf(ﬁ(” w®

"jl

Pe(6®) m - N ZQN (€D, w®) L5y

MFUQ for Radiation Transport with Stochastic Media

Y k=1

(k))

)defQ

(H)

L (€9,

(k))
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MF UQ FORMULATION
SINGLE FIDELITY MC AND NOTATION

We want to compute

¢ [Pe) ~ ZP ")

where
Pe(¢?) ¥EL [QED, )] ~ wZQ(&") w®)
and -
QD w®) UE, [re®,w®,n)] ~ n;f(ﬁ(”wk D) & @y, (€9, w®)

Let's now use these definitions in reverse order

N,
i 1 &K i ~E i
Pe(e¥) m = D Qwy (67,0 ™) EEY ()
Y k=1
and, finally
o (€0) E (Pady

3
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MF UQ FORMULATION
CONTROL VARIATE / MFMC / ACV FORMULATION

Let's consider a two-model MF UQ estimator

Ee [Pe] ~ () +
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MF UQ FORMULATION
CONTROL VARIATE / MFMC / ACV FORMULATION

Let's consider a two-model MF UQ estimator

Ee [Pe] ~ <}EF>N$ T <<PEF>N5 B <PEF>;N5>
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MF UQ FORMULATION
CONTROL VARIATE / MFMC / ACV FORMULATION

Let's consider a two-model MF UQ estimator

E¢ [Pe] = <}EF>A"E e <<PEF>NE B <PEF>;N5> = <PE>%§
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MF UQ FORMULATION
CONTROL VARIATE / MFMC / ACV FORMULATION

Let's consider a two-model MF UQ estimator

E¢ [Pe] = <}EF>A"E e <<PEF>NE B <PEF>;N5> = <PE>%§

The variance of this estimator is

where

2LW.T. Ng and K. Willcox. “Multifidelity Approaches for Optimization Under Uncertainty”. In: Int. J. Numer. Meth. Engng 10 (2014), pp. 746-772.
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MF UQ FORMULATION
CONTROL VARIATE / MFMC / ACV FORMULATION

Let's consider a two-model MF UQ estimator

Ei [PE] ~ <?ljF>N5 T <<PEF>N5 B <PH1£F>;N5> d:ef <]P>E>%I§

The variance of this estimator is

where

Remarks:

@_ The estimator variance Var {<Tm>\ } depends on N¢, N, and N,
N¢

@_ All quantities denoted by ~ are polluted by the finite number of samples N, and N,

2L W Ng and K. Willcox. “Multifidelity Approaches for Optimization Under Uncertainty”. In: Int. J. Numer. Meth. Engng 10 (2014), pp. 746-772.
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MF UQ FORMULATION
ROADMAP

Q: How do we obtain an optimal MF UQ estimator for these problems?

Roadmap

STEP 1: Understand Var |:<]P’]}3IF>N :| dependence on N¢, N, and N,
3

STEP 2: Take into account 3> dependence on N, and N,
STEP 3: Introduce cost models C~HF and éLF

STEP 4: Take into account 7 dependence on N, and N,
STEP 5: Quantify MF UQ estimator efficiency w.r.t MC

MFUQ for Radiation Transport with Stochastic Media 9/18



MF UQ FORMULATION
ROADMAP

Roadmap

STEP 1: Understand Var {<PEF>N } dependence on N¢, N, and N,
£
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MF UQ FORMULATION
SINGLE FIDELITY POLLUTED VARIANCE

o2 (&, w
W]M& Ewgv,jizili)]

Parametric variance N ,
Stochastic media
MC RT

Var [Jﬁ%w] = Vare [Pg] +E¢ [

w

Remarks®
@_ Polluted quantities are the only ones we can directly measure

@_ Variance deconvolution: remove noise from polluted variance Var []P’jva]

Var,, [Q(&, w)] is also inaccessible, this requires another variance deconvolution

MC RT contribution is )
0, (&, w) = Vary [f(§, w,n)]

3G. Geraci and Aaron J. Olson. “Deconvolution strategies for efficient parametric variance estimation in stochastic media transport problems”. In: ANS Transactions (2022),
pp. 279-282.
MFUQ for Radiation Transport with Stochastic Media
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MF UQ FORMULATION
ROADMAP

Roadmap

STEP 2: Take into account j° dependence on N, and N,

MFUQ for Radiation Transport with Stochastic Media 10/18



MF UQ FORMULATION
POLLUTED CORRELATION

Link between the polluted correlation ﬁ2 and p2

2
~2 4

- 1+ 7p2

where
= Vare [PgF] +ir (N, NS 4 Varg [pg] e VT NTF) i (N, N ) (N, N

represents the stochastic solver noise effect, which decreases ,o2

MFUQ for Radiation Transport with Stochastic Media 11/18



MF UQ FORMULATION
ROADMAP

Roadmap

STEP 3: Introduce cost models Cyr and Cpp

MFUQ for Radiation Transport with Stochastic Media 11/18



MF UQ FORMULATION
INTRODUCING A REALISTIC MODEL COST

Let's introduce a cost model

@_ We account for the re-sampling cost, i.e. sampling more time the same configuration is less expensive

MFUQ for Radiation Transport with Stochastic Media 12/18
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Let’s introduce a cost model
@_ We account for the re-sampling cost, i.e. sampling more time the same configuration is less expensive
@ We consider three nested operations

@_ UQ configuration C¢
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INTRODUCING A REALISTIC MODEL COST

Let’s introduce a cost model
@_ We account for the re-sampling cost, i.e. sampling more time the same configuration is less expensive
@ We consider three nested operations

@_ UQ configuration C¢
@_ Stochastic media arrangement C,,
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MF UQ FORMULATION
INTRODUCING A REALISTIC MODEL COST

Let’s introduce a cost model
@_ We account for the re-sampling cost, i.e. sampling more time the same configuration is less expensive
@ We consider three nested operations

@_ UQ configuration C¢
@_ Stochastic media arrangement C,,
@_ Particle histories C,,
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MF UQ FORMULATION
INTRODUCING A REALISTIC MODEL COST

Let’s introduce a cost model
@_ We account for the re-sampling cost, i.e. sampling more time the same configuration is less expensive
@ We consider three nested operations

@_ UQ configuration C¢
@_ Stochastic media arrangement C,,
@_ Particle histories C,,

@_ A single fidelity estimator will have a total cost of
Cot = N§C§ +N§ (CwNw + CanNn)

= N¢C(N.,,N,), where C(N.,N,)=C¢+ (CoN, +CyNuN,)
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MF UQ FORMULATION
INTRODUCING A REALISTIC MODEL COST

Let’s introduce a cost model
@_ We account for the re-sampling cost, i.e. sampling more time the same configuration is less expensive
@ We consider three nested operations

@_ UQ configuration C¢
@_ Stochastic media arrangement C,,
@_ Particle histories C,,

@_ A single fidelity estimator will have a total cost of

Cot = N§C§ +N§ (CwNw + CanNn)

= N¢C(N.,,N,), where C(N.,N,)=C¢+ (CoN, +CyNuN,)

@_ For a deterministic solver

C1,1)=Cc+Cu+C, ¥

12/18 J
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MF UQ FORMULATION
ROADMAP

Roadmap

STEP 4: Take into account 7 dependence on N, and N,
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MF UQ FORMULATION
SAMPLE ALLOCATION FOR MC RT SOLVERS

Optimal oversampling ratio: 7 =

Let's introduce the polluted terms ﬁz, Cur and Crp (generalization of4)
o Cup = CF + CEFNIF + CIFNIFNTT = ¢ 4 ¢ (NIF, NTT)

HF HF HF
e 1- el et | clify
F= —r CHF CHF
: : LF -LF
L—pt7p> | clftelf | ol
CLF CLF
r: unpolluted over ling ratio

R(NBF ,N?]F ,N‘I:,F ,N%F): stochastic solver contribution

4G. Geraci, L.P. Swiler, and B.J. Debusschere. “Multifidelity UQ Sampling for Stochastic Simulations”. In: 16th U.S. National Congress on Computational Mechanics (2021).
MFUQ for Radiation Transport with Stochastic Media
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MF UQ FORMULATION
ROADMAP

Roadmap

STEP 5: Quantify MF UQ estimator efficiency w.r.t MC

MFUQ for Radiation Transport with Stochastic Media 13/18



Numerical results




RADIATION TRANSPORT
1D TRANSPORT IN STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES

1D slab, neutral particle, absorption-only mono-energetic steady state radiation transport
Normally incident beam with unitary magnitude
Random cross sections (m = A,B): 3 n,({m) = E?’m + Efmﬁm, where &4, &g ~ U(—1,1)

The Qol is the transmittance

Analytical solution:
Transmittance: 7(,w) = exp [—7(&§,w)], where
Slab optical thickness: 7(¢,w) = Ax (Na(w)3pa(€a) + Np(w)S 5(€8))

NOTE: Nj(w) ~ B(Nit, Pas), where Ngy(w) + Np(w) = Nyt

MFUQ for Radiation Transport with Stochastic Media 14/18



1D MC RT FOR STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES
MULTIFIDELITY ANALYSIS SCENARIO

High-Fidelity Low-Fidelity
Axt
Material [[ 20 [em™1] | =2, [em™] [ pn
A
B

TABLE: Material properties

Model Nyt | Ax [em] C Cw C. C

LF

TABLE: Model configuration — Cyp /Cpp = 48.71
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1D MC RT FOR STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES
MULTIFIDELITY ANALYSIS SCENARIO

High-Fidelity Low-Fidelity
—
R H_J
Axt
Material [[ 20 [em™1] | =2, [em™] [ pn
A
B
TABLE: Material properties
Model Niot Ax [em] C Cu C C
HF
LF

TABLE: Model configuration — Cyp /Cpp = 48.71

Two analysis scenarios:
@_ First — HF dataset assigned, i.e. NEF and N;IF are assigned

@_ Second — Stochastic media configurations assigned for both models, i.e. NEF and NLI;F are assigned

MFUQ for Radiation Transport with Stochastic Media 15/18



NUMERICAL RESULTS
COST REDUCTION COMPARED TO MC (3D VIEW)

Scenario 1: HF dataset assigned — N'F = 10 and NEF =15 Scenario 2: Stoch media assigned — NF = 10 and N'F = 25

©' - (NHF, NHF) = (10,15) O/ -- (NHF, NEF) = (10,25)

log @/
log @/

MFUQ for Radiation Transport with Stochastic Media
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NUMERICAL RESULTS
COST REDUCTION COMPARED TO MC (CONTOUR PLOT)

Scenario 1: HF dataset assigned — Ni" = 10 and N* = 15 Scenario 2: Stoch media assigned — N''F = 10 and N'F = 25

' - (NHF, NHF) = (10,15) ' - (NHF, NLFy = (10,25)

50
140
3.0 1.6
40 120
1.4
2.5 100
30 1.2
w 2.0 W 80
~ o 4
=z = 1.0
20 15 60
0.8
40
1.0
10 0.6
20
0.5 0.4
20 40 60 80 100 120 140
NLF
w
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Closing remarks




CLOSING REMARKS
WORK-IN-PROGRESS

Summary
@_ Radiation transport methods can benefit from MF UQ
@_ Deploying MF UQ for stochastic solvers is more challenging than for deterministic solvers

@_ Stochastic noise needs to be optimally controlled to preserve MF UQ performance

Talk’s contributions
@_ Formulation for MF UQ applied to MC RT problems
@_ Stochastic media effect explicitly included
@ Cost model extended to include re-sampling cost
)

Verification exact solution for MF UQ with binary mixing

Next steps
@_ Extension to a realistic deployment (from pilot samples to statistics estimation)
@_ Extension to multiple models (e.g. leveraging Approximate Control Variate®, etc.)

@_ Extension to high-order statistics

5A. Gorodetsky et al. “A generalized approximate control variate framework for multifidelity uncertainty quantification”. In: Journal of Computational Physics 408 (2020).
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MF UQ FORMULATION
SINGLE FIDELITY POLLUTED VARIANCE (ADDITIONAL DETAILS)

N,
1 s ; 1 N
v (o), ] = vr | Bt - v )

i=
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MF UQ FORMULATION
SINGLE FIDELITY POLLUTED VARIANCE (ADDITIONAL DETAILS)

N,
1 s ; 1 N
v (o), ] = vr | Bt - v )

i=

Law-of-total variance
ar [B5] = Vare [Bn. [B5]] + Be [V [F5"]]
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MF UQ FORMULATION
SINGLE FIDELITY POLLUTED VARIANCE (ADDITIONAL DETAILS)

N,
1 s ; 1 N
vor (o), | v [ e | = e

i=

Law-of-total variance
Var [F5] = Vare [Bo. [F57]] + Be [vars.o [5]]

By applying, once again, the law-of-total variance we get

_ Var, Q& @)l | E, [ai(é,w)}

Vary,, o {I@’IE\,W ] N, NN,
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MF UQ FORMULATION
SINGLE FIDELITY POLLUTED VARIANCE (ADDITIONAL DETAILS)

N,
1 s ; 1 N
v (o), ] = vr | Bt - v )

i=

Law-of-total variance
ar [B5] = Vare [Bn. [B5]] + Be [V [F5"]]

By applying, once again, the law-of-total variance we get

_ Var, Q& @)l | E, [ai(é,w)}

Vary,, o {I@’%w ] N, NN,

which leads to the final estimator variance

- Var,,
Var []P’f,w] = Vare [Pg] + E¢ { are

MFUQ for Radiation Transport with Stochastic Media 18/18



MF UQ FORMULATION
POLLUTED CORRELATION (ADDITIONAL DETAILS)

9f 5E,HF E,LF
Cov?(B 1, BT

N Var [@Eff‘] Var [H—J’%:F]

Properties:
@_ Law-of-total covariance: Cov[@ng,@ng] = E¢ {Covw)n[]@f,fF,@%i‘FH + COVE[]ng {I@}E\,’SF] yEew []@I%i‘F]]
@_ All estimators are unbiased, e.g. E,, []ﬁflfF] =PHF

@ w and n for HF and LF variables are independent
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MF UQ FORMULATION
POLLUTED CORRELATION (ADDITIONAL DETAILS)

9f 5E,HF E,LF
Cov?(B 1, BT

N Var [@Eff‘] Var [H—J’%:F]

Properties:
@_ Law-of-total covariance: Cov[@ng,ﬂ”ng] = E¢ {Covw)n[lﬁﬁfF,@%i‘F]] + COVE[]ng {I@}E\,’SF] yEew []@I%i‘F]]
@_ All estimators are unbiased, e.g. E,, []ﬁflfF] =PHF

@ w and n for HF and LF variables are independent

. (e )’
(Vare [PEF] + yup (VHF, NHF) ) (Varg [PEF] 4+ y0p VEF, V) )
Var,, [QHF(&w)]} . {Ew [o%(&u)}}

yur = E¢
{ NHF NHFNHF

LF
LF = Ee {Varw 2 (ﬁ,w)}:| +E¢ [E“" [”%(E’M]}

NLF NLFNLF

MFUQ for Radiation Transport with Stochastic Media
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MF UQ FORMULATION
MF ESTIMATOR EFFICIENCY W.R.T MC (1/2)

Cost ratio w.r.t. MC for same estimator variance stzarge,
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MF UQ FORMULATION
MF ESTIMATOR EFFICIENCY W.R.T MC (1/2)

Cost ratio w.r.t. MC for same estimator variance stzarge,
@ MF UQ cost allocation

EHF] (HF A HF
NMF _ var {]PNW ] We - Ny <17 R—1 p* )

¢ etzarget R 1+ sz

MF MF 5 MF 5
Ciot =Ng Cur +Ng rRCrp

Cur CuF Cur CLr

CHF+CHF CHF c CLF+CLF C
:NQ’IFCHF<<1,H+M +RAE (e TF0
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MF UQ FORMULATION
MF ESTIMATOR EFFICIENCY W.R.T MC (1/2)

Cost ratio w.r.t. MC for same estimator variance stzarge,

@ MF UQ cost allocation

3

E,HF HF HF
e _ Y [N ] v, VA < -

2
etarget

rR—1 p?
rR 1+ 1p2

MF MF 5 MF 5

Cit =Ng¢ Cur +Ng rRCrp

CHF+CHF CHF c CLF+CLF
:NQMCHF ((1, Zw Trmoy Zen | pPLF (g T TEm

Cur CuF Cur CLr
@ MC cost allocation

Var [@}E\,’HF] (WHF, NHF)
w

NYC = -
5target
L CHF + CHF CHF
C?gtc — A’\":l1('CHF _ N?CCHF 1w n + w,n
CHF CHF

MFUQ for Radiation Transport with Stochastic Media
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MF UQ FORMULATION
MF ESTIMATOR EFFICIENCY W.R.T MC (2/2)

First analysis scenario — same averaging for HF

LF | oLF LF
et el c

MF (A7MF a7HF a7HE A7LF A7LF _ fw T w,n
aer Ciot N, Ny, Ny NS NG (1_ rR71ﬁ2> 1+rRCLF T T Crr
CHF (N, NI, N1 " Cur  _ CBelF I,

CHF CHF
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MF UQ FORMULATION
MF ESTIMATOR EFFICIENCY W.R.T MC (2/2)

First analysis scenario — same averaging for HF

LF | oLF LF
et el c

WMF A TMF HF HF LF LF — w,n
def Crot (Ng NG an NS 7N7, o (l_erlﬁz) 1+rRCLF CLF CLr
CHZ (N¥C, NEF, NTF) R Cr | _ CHF 4ol CHF

CHF CHF

Second analysis scenario — NSF =1and N;{F =1 for MC
MF (A\TMF AfHF A7HF ArLF A7LF
I def Ctat (Ng ’Nw ’Nn 7Nw ,N”

CHC(N¥C NHF = 1 NHF = 1)

Vary [@F (6.w) Eu [0 (6,0)
Vare [PE] + Ee {%] +E¢ {‘“I\ng’i@m]]

HF HF HF
(17 C. +C, N CM> o

Vare [PEF] + E¢ [Vary [QUF (€, w)]] + E¢ [Ew [02(£,w)]] Car  Cur
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1D MC RT FOR STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES
SUMMARY OF THE UQ EXACT SOLUTION (1/2)

@_ Derived all terms needed for closed-form variance Var, [Pg]

@ MF UQ analysis required Covs[PgF, PﬁF] (to evaluate the correlation)
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1D MC RT FOR STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES
SUMMARY OF THE UQ EXACT SOLUTION (1/2)

@_ Derived all terms needed for closed-form variance Var, [Pg]

@ MF UQ analysis required Cov5[PgF, PﬁF] (to evaluate the correlation)

Summary of the Cov derivation
@_ Qol in closed-form as function of Ny (w)

F(gp.6p)=Fo+Fa (€4.€B)

[ |
Py" = E, [THF] = exp [ Nif Ax =t B(EB)] }VHB A ( A= Sip+ Sk - ‘32_.\353) }
I J
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1D MC RT FOR STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES
SUMMARY OF THE UQ EXACT SOLUTION (1/2)

@_ Derived all terms needed for closed-form variance Var, [Pg]

@ MF UQ analysis required Covs[PgF, PﬁF] (to evaluate the correlation)

Summary of the Cov derivation
@_ Qol in closed-form as function of Ny (w)

[ |
PR =B, [T7F] = exp [7NEFAI-3ICFELB(§B)] o }NEF (w)Ax (20— =05 + 5{u — =5¢8) }
| J

@_ Leverage the probability mass function of Ny (w)

NHF

HF tot NHF, HF _ HF
B [NA@IATF (€ 0)| = 30 Srlo o (= )l exp [~aAr Pl )]
=0 xA(Nzot —x)!
Niot HF
=" By (x)exp [—xAx Fa(€a:€B )]
=0
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1D MC RT FOR STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES
SUMMARY OF THE UQ EXACT SOLUTION (1/2)

@_ Derived all terms needed for closed-form variance Var, [Pg]

@ MF UQ analysis required Covs[PgF, PﬁF] (to evaluate the correlation)

Summary of the Cov derivation
@_ Qol in closed-form as function of Ny (w)

[ |
PR =B, [T7F] = exp [7NEFAI-3ICFELB(§B)] o }NEF (w)Ax (20— =05 + 5{u — =5¢8) }
| J

@_ Leverage the probability mass function of Ny (w)

HF
[,  ®F Niot NHF, . NEF HF
Eg {A’\‘./\('w‘)l\" F(¢a, 53)} => TNFF o PA (1 —py)7tot ~"exp [7xAx F(€a, EB)]
x=0 xl( tot —x)!
Niot HF
SDIL RO e NOWS)
x=0
@_ Evaluate statistics, e.g. the expected value
HF . Hr JF A JF A
N};‘F sinh [xAx ZtAA] sinh |:Ntot Ax Et,B (1 - N?IF) Ax Zt,A
HF 0 ’ tot
Ee [PE"] = exp [~NutAxS(p] | D Bu@)() a — o — ,
=0 x HF A A
x A NEFATSA (1 - NﬁF) AXTH,
tot
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1D MC RT FOR STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES
SUMMARY OF THE UQ EXACT SOLUTION (2/2)

Covs[PgF,PEF] =Ee [PE‘FPEF} — Ee [PEF] Ee [IPE]

LF
HF ,LF 0 gr HF g LF L HF | oLF
Ee []PJE Py } = exXp {*Zt,B (Ntot Ax + Ny A ZBL.; (x)B; (x) ( HF F N
x Ax ) >z
HF LF
sinh [ (=~ NHF) &5 4 (2 - NEF) &) 28]
' Hr) AIF LF) AF) A
((x—Nm)Ax + (xiNtut)Ax Zt,B

HF LF HF LF
sinh [(xAx A ) 2ZA_A] sinh [((x —NEF) Ax 4+ (v - N ) ztAB]

Niog Yot HF LF
+ Z ZBW @B ) HF LF A ur\ HF LF\ ALF A

":05;;2 (xAx +yA")Ez,A ((x_Ntot)Ax + (y—Nznt)A">Ez,B

LF HF LF HF
N NIF sinh Kmx +yAx> Z,AA] sinh [((1 - N &+ (y - NEF) A ztAB]
LF HF ’ ’

+ Z Z BS (B, 0) LF HF A LF\ ALF Hr\ HF A

*=0y=NE 11 (xAx Tyax ) W) ((x 7Ntat) Ar + (y = Niot ) Ax ) 0B
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|NUMERICAL RESULTS
SCENARIO 1: HF DATASET ASSIGNED - N.* = 10 AND N}* = 15 — COST RATIO (1/2)

Scenario 1

© - (NHF, NHF) = (10,15) ' - (N/F, NFF) = (10,15)
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NUMERICAL RESULTS

SCENARIO 1: HF DATASET ASSIGNED - N.* = 10 AND N}* = 15 — COST RATIO (1/2)

0 -- (NAF, NjF) = (10,15)
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20 40 60 80 100 120 140
NLF
w
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NUMERICAL RESULTS
SCENARIO 1: HF DATASET ASSIGNED - N.* = 10 AND N}* = 15 — COST RATIO (1/2)

O -- (NHF, N,’;’F) = (10,15) e -- (NHF, N,’jF) = (10,15)
50 50
1.4
3.0
40 1.2 40
2.5
1.0
30 30
=13 Y 2.0
= 08 =
20 20 1.5
0.6
r
10 04 10 1.0
0.2 0.5
20 40 60 80 100 120 140 20 40 60 80 100 120 140
NEF NLF
7 2
HF Vare, [@F (¢,0)] By [02 (€.w)]
Vary [PE ] + Ee VAT +E¢ | —ymrynr HF | AHF HF
of — w w Ny (1 C, +¢, +Cwm>®
Vare [PEF] + B¢ [Var,, [QFF (€, w)]) + Ee [Eu [02(¢,w)]] Cur Cur
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NUMERICAL RESULTS
SCENARIO 1: HF DATASET ASSIGNED - N.* = 10 AND N\* = 15 - CORRELATION/ALLOCATION

R -- (NHF, Nﬂ,‘”:) = (10,15)

B - (NIF,NJF) = (10,15)

0.30
0.25
020 R
0.15

B
0.10

100125
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|NUMERICAL RESULTS
SCENARIO 2: STOCHASTIC MEDIA ASSIGNED - NF — 10 AND N = 25 - CosT RATIO (1/2)

Scenario 2

O - (NHF, NLF) = (10,25) o' - (NHF, NLF) = (10,25)
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NUMERICAL RESULTS
SCENARIO 2: STOCHASTIC MEDIA ASSIGNED - NIF

© -- (NHF, NLF) = (10,25)
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40 4

20

HF
N’7
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= 10 AND NF = 25 — CosT RATIO (1/2)
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NUMERICAL RESULTS
SCENARIO 2: STOCHASTIC MEDIA ASSIGNED - NF — 10 AND N = 25 - CosT RATIO (1/2)

o -- (NSF' NbF) = (10,25) o -- (NSF, NbF) = (10,25)
0.45
140 140
1.6
120 0.40 120
1.4
100 035 100
1.2
wo 80 030 4 80
‘ = 1.0
60
0.25 60
0.8
40 4 40
0.20 0.6
20 20
0.15 —— 0.4
60 80 100 120 140 20 40 60 80
HF
N Ny
HF vare, [QHF (¢,w) Ew [0 (§,w)
Vare []PIE ] +Ee [ AF | +Ee [H;Z F . HF | HF HF
o = i 1- = T4 =) e
Vare [PgF} + E¢ [Var,, [QHF (¢, w)]] + E¢ []Ew [a%(&,w)]] Chr Chr
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NUMERICAL RESULTS

SCENARIO 2: STOCHASTIC MEDIA ASSIGNED - NF = 10 AND N'F = 25 - CORRELATION/ALLOCATION

7 - (NHF, NEF) = (10,25)
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