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3 Max-Cut

G = (V , E ), find the largest number of edges crossing any partition V = V1 ⊔ V2.

V1
K = Max-Cut(G) = 8

A canonical example of a constraint satisfaction problem (CSP).
NP-hard to approximate.
How much space does a streaming algorithm need to return K ′ ∈ (K/γ, K )?
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4 Streaming Complexity of Max-Cut

2-approximation is trivial in O(log n) space.

(1 + ε)-approximation in eO(n) space with sparsifiers.
Gap gradually closed in [Kogan, Krauthgamer ‘15],
[Kapralov, Khanna, Sudan ‘15], [Kapralov, Khanna, Sudan, Velingker ‘17].
Resolved in [Kapralov, Krachun ‘19]. (2 − ε)-approximation requires Ω(n) space.
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5 Our Results

We generalize these results in two directions.

Max-Cut

Quantum Max-Cut

Approximation Factor 2 + ε 2 − ε
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Classical Algorithm O(log n) Ω(n)

O(log n) Ω(n)
Quantum Algorithm O(log n) Ω(n) O(log n) Ω(n)

Lower bounds for quantum streaming algorithms.
Key tool: managing the evolution of the Fourier coefficients of a quantum protocol
under the application of a quantum channel.

And for Quantum Max-Cut.
Matching upper bound for (2 + ε)-approximation.
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6 Quantum Streaming Algorithms

Streaming algorithms that maintain quantum state.

|0⟩⊗k = ϕ ⇒
u1

Nu1(ϕ) ⇒
u2

Nu2 ◦ Nu1(ϕ)

[Le Gall ‘06], [Gavinsky, Kempe, Kerenidis, Raz, de Wolf ‘08] Exponential space
advantage possible.
[Montanaro ‘16], [Hamoudi, Magniez ‘19], [K. ‘22] Polynomial advantages known
for “natural” problems.
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7 Distributed Implicit Hidden Partition (DIHP)

Introduced in [Kapralov, Krachun ‘19].

YES: NO:

T -player sequential communication game. Player t gets a random partial
matching Mt on αn vertices, |V | = n, α = Θ(1/

√
α).

YES case: there is a secret string x ∈ {0, 1}V . Player t gets y = Mtx , i.e.
yuv = xu ⊕ xv for each edge uv ∈ Mt .
NO case: Player t gets y ∈ {0, 1}Mt at random.
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YES: NO:

YES case: x gives a perfect cut of this graph.
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�
1/

√
T
�
).

DIHP reduces to (2 − Θ
�
1/

√
T
�
) approximating Max-Cut.



8 Reduction from Max-Cut

Consider the graph of the m edges labelled 1.

YES: NO:

YES case: x gives a perfect cut of this graph.

NO case: Graph is close to random, best cut is m(1/2 + Θ
�
1/

√
T
�
).

DIHP reduces to (2 − Θ
�
1/

√
T
�
) approximating Max-Cut.



8 Reduction from Max-Cut

Consider the graph of the m edges labelled 1.

YES: NO:

YES case: x gives a perfect cut of this graph.
NO case: Graph is close to random, best cut is m(1/2 + Θ

�
1/

√
T
�
).

DIHP reduces to (2 − Θ
�
1/

√
T
�
) approximating Max-Cut.



8 Reduction from Max-Cut

Consider the graph of the m edges labelled 1.

YES: NO:

YES case: x gives a perfect cut of this graph.
NO case: Graph is close to random, best cut is m(1/2 + Θ

�
1/

√
T
�
).

DIHP reduces to (2 − Θ
�
1/

√
T
�
) approximating Max-Cut.



9 Fourier Coefficients

[Kapralov, Krachun ‘19] Solving DIHP requires learning many even parities of the
underlying partition (if there is one).

Intuition: in a YES case, each edge label given to player t is “consistent” with
the corresponding vertex labels.
The “knowledge” player t has about these parities can be quantified in terms of
Fourier coefficients.
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10 Fourier Analysis (of Quantum Protocols)

Given a protocol, we can write down a function ft : {0, 1}n → Cβ×β that gives the
density matrix ft(x) of player t’s message if the problem is in a YES state with vertex
labels x .

ft−1(x) ⇒ BQ

⇒

Mtx

⇒ ft(x)

For each set S of vertices we consider the Fourier coefficient bft(S) = Ex
�
(−1)S·x ft(x)

�
.



10 Fourier Analysis (of Quantum Protocols)

Given a protocol, we can write down a function ft : {0, 1}n → Cβ×β that gives the
density matrix ft(x) of player t’s message if the problem is in a YES state with vertex
labels x .

ft−1(x) ⇒ BQ

⇒

Mtx

⇒ ft(x)

For each set S of vertices we consider the Fourier coefficient bft(S) = Ex
�
(−1)S·x ft(x)

�
.



10 Fourier Analysis (of Quantum Protocols)

Given a protocol, we can write down a function ft : {0, 1}n → Cβ×β that gives the
density matrix ft(x) of player t’s message if the problem is in a YES state with vertex
labels x .

ft−1(x) ⇒ BQ

⇒

Mtx

⇒ ft(x)

For each set S of vertices we consider the Fourier coefficient bft(S) = Ex
�
(−1)S·x ft(x)

�
.



11 Hypercontractivity

Suppose player t ignored everything from player t − 1. Then we would have

X
|S|=k

∥bft(S)∥2
1 ≤

 
β

k

!

for β-qubit messages by hypercontractivity.

This would suffice to make player t + 1 learn very little if β ≪ n.
But we need to control how player t incorporates a message from player t.
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12 Evolution of Fourier Coefficients

A key ingredient of the classical proof is the fact that, because the input distribution is
known, the protocol can be assumed to be deterministic.

ft−1(x) ⇒ B

⇒

Mtx

⇒ a(ft−1(x), Mtx)

In the quantum setting the possibility of e.g. measurements means that we have to
consider player t applying an arbitrary quantum channel.
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13 Quantum Channels

A quantum channel represents any realizable transformation of a density matrix on β
qubits.
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⇒ At
Mtx(ft−1(x))

Our idea is to apply Fourier analysis to the family of channels each player might apply.



13 Quantum Channels

A quantum channel represents any realizable transformation of a density matrix on β
qubits.

ft−1(x) ⇒ BQ

⇒

Mtx

⇒ At
Mtx(ft−1(x))

Our idea is to apply Fourier analysis to the family of channels each player might apply.



14 Fourier Transform of a Quantum Channel

Let (Ny )y∈{0,1}n be a family of channels. We extend the Boolean Fourier transform by
defining: cNS = E

y

h
(−1)S·y Ny

i

A convolution theorem (analogous to one for products of scalar-valued functions)
applies: dN f (S) =

X
U∈{0,1}n

cNUbf (U ⊕ S)
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is non-zero iff U corresponds to a set of edges in Mt .
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So each Fourier coefficient bft−1(S) can be seen as generating one Fourier coefficientbft(S ⊕ Mtr
t y) for each subset y of Mt .
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Combinatorics and matrix hypercontractivity gives us that ∥ft−1(S)∥1 will be small for
all S matched by player t’s edges if # of qubits β ≪ n/21/T .

DIHP requires n/21/T (qu)bits of quantum or classical communication.
So (2 − ε)-approximation of Max-Cut requires n/2O(ε) space.
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problem.

H =
X

I ⊗ L

A sum of “local” terms operating on a small number of qubits each.
Objective is to find minimum/maximum x∗Hx among n-qubit states x .
Many important problems in physics take this form.
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18 Quantum Max-Cut

One of these is the anti-ferromagnetic Heisenberg
model.

Searching for the minimum energy of this
creates a Hamiltonian maximization problem
that returns half the cut value of any classical
string viewed as a partition.
Also referred to as Quantum Max-Cut.

Figure: Anti-ferromagnetic Heisenberg
model: roughly neighboring quantum
particles aim to align in opposite
directions.
[Image: Sachdev, arXiv:1203.4565]
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19 Reducing DIHP to Quantum Max-Cut

The Quantum Max-Cut value of a graph is always at least 1/2 its Max-Cut
value, so a YES instance of DIHP has value m/4.

For the NO case we will need the
following SDP:

max
f :V →Sn−1

X
uv∈E

−⟨f (u), f (v)⟩

This is a shifted version of the Goemans-Williamson SDP for Max-Cut. We use two
properties:

If it is ε, Quantum Max-Cut value is m/2 + O(ε).
If Max-Cut value is m/2 + O(ε), SDP is O(ε).

So NO instances have Quantum Max-Cut value at most m(1/2 + Θ
�
1/

√
T
�
) too!
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20 Conclusion

Max-Cut Quantum Max-Cut
Approximation Factor 2 + ε 2 − ε 2 + ε 2 − ε

Classical Algorithm O(log n) Ω(n) O(log n) Ω(n)
Quantum Algorithm O(log n) Ω(n) O(log n) Ω(n)

[Chou, Golovnev, Sudan, Velingker, Velusamy ‘22] gives linear lower bounds for a
larger class of CSPs. Do these results translate?
Weighted Quantum Max-Cut.
Can we sparsify (some) 2-local Hamiltonians?
If we can, can we solve them in O(n) space?
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