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Algorithms for graphs received one edge at a time.

K/ .

Theoretical study is mostly concerned with space complexity.
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31 Max-Cut

G = (V, E), find the largest number of edges crossing any partition V = V; LI V5.

K = Max-Cut(G) =8
Vi

A canonical example of a constraint satisfaction problem (CSP).
NP-hard to approximate.
How much space does a streaming algorithm need to return K’ € (K /v, K)?
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2-approximation is trivial in O(log n) space.

(1 4 ¢)-approximation in O(n) space with sparsifiers.

Gap gradually closed in [Kogan, Krauthgamer ‘15],

[Kapralov, Khanna, Sudan ‘15], [Kapralov, Khanna, Sudan, Velingker ‘17].

Resolved in [Kapralov, Krachun ‘19]. (2 — ¢)-approximation requires (n) space.
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We generalize these results in two directions.

Max-Cut QUANTUM MaX-CuT

Approximation Factor 24¢ 2—¢ 24¢ 2—¢
Classical Algorithm | O(logn) Q(n) O(log n) Q(n)
Quantum Algorithm | O(logn) Q(n) O(log n) Q(n)

Lower bounds for quantum streaming algorithms.

Key tool: managing the evolution of the Fourier coefficients of a quantum protocol
under the application of a quantum channel.

And for QUANTUM MAX-CUT.
Matching upper bound for (2 + €)-approximation.
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6 | Quantum Streaming Algorithms

Streaming algorithms that maintain quantum state.

|0>®k =¢ fme((ﬁ) f;Nuz ONU1(¢)

[Le Gall ‘06], [Gavinsky, Kempe, Kerenidis, Raz, de Wolf ‘08] Exponential space
advantage possible.

[Montanaro ‘16], [Hamoudi, Magniez ‘19], [K. ‘22] Polynomial advantages known
for “natural” problems.
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Introduced in [Kapralov, Krachun ‘19].
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T-player sequential communication game. Player t gets a random partial
matching M; on an vertices, |V| = n, a = ©(1/\/a).

YES case: there is a secret string x € {0,1}V. Player t gets y = M;x, i.e.
Yuv = Xu P x, for each edge uv € M;.

NO case: Player t gets y € {0,1}M: at random.
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Reduction from MaAaX-CuT

Consider the graph of the m edges labelled 1.

KO o (@] o (@] ° O o o o
YES: o / o o X o NO: ° / °
o o O\o o

YES case: x gives a perfect cut of this graph.

NO case: Graph is close to random, best cut is m(1/2 + @(1/ﬁ))

DIHP reduces to (2 — (1/\/>>) approximating MAX-CUT.
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[Kapralov, Krachun ‘19] Solving DIHP requires learning many even parities of the
underlying partition (if there is one).
Intuition: in a YES case, each edge label given to player t is “consistent” with
the corresponding vertex labels.
The “knowledge” player t has about these parities can be quantified in terms of
Fourier coefficients.
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10 | Fourier Analysis (of Quantum Protocols)

Given a protocol, we can write down a function f; : {0,1}" — CP*5 that gives the
density matrix f;(x) of player t's message if the problem is in a YES state with vertex
labels x.

fi_1(x) = = fi(x)

i
MtX

For each set S of vertices we consider the Fourier coefficient f;(S) = E [(—1)%*f(x)].
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11 I Hypercontractivity

Suppose player t ignored everything from player t — 1. Then we would have
g
SRS < ( .
S|=k

for 5-qubit messages by hypercontractivity.
This would suffice to make player t + 1 learn very little if 5 < n.

But we need to control how player t incorporates a message from player t.
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Evolution of Fourier Coefficients

A key ingredient of the classical proof is the fact that, because the input distribution is
known, the protocol can be assumed to be deterministic.

fi1(x) = m = a(fi_1(x), Mex)

)
M, x

In the quantum setting the possibility of e.g. measurements means that we have to
consider player t applying an arbitrary quantum channel.
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13 I Quantum Channels

A quantum channel represents any realizable transformation of a density matrix on /3
qubits.

a() = [Z) = Abnlhia()

T
MtX

Our idea is to apply Fourier analysis to the family of channels each player might apply.
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14 | Fourier Transform of a Quantum Channel ™

Let (Ny)ye{o,1}» be a family of channels. We extend the Boolean Fourier transform by |
defining:
Ns =E[(-1)*7A; ]

A convolution theorem (analogous to one for products of scalar-valued functions)
applies: e N
NES)= Y. Nif(UaS)

ue{o,1}"
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15 | Fourier Coefficients Under Quantum Evolution

E, [(—1)>Yf(x)] is non-zero iff U corresponds to a set of edges in M.

So each Fourier coefficient ?t_l(S) can be seen as generating one Fourier coefficient
(S @ ML'y) for each subset y of M;.
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16 . DIHP Lower Bound

Combinatorics and matrix hypercontractivity gives us that ||f;—1(S)|/1 will be small for
all S matched by player t's edges if # of qubits 5 < n/2Y/T.

DIHP requires n/2%/T (qu)bits of quantum or classical communication.

So (2 — €)-approximation of MAX-CUT requires n/2°() space.
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17 | Quantum Generalizations of CSPs ()

The quantum generalization of a constraint satisfaction problem is a local Hamiltonian |

problem.
H=> I®L

A sum of “local” terms operating on a small number of qubits each.
Objective is to find minimum/maximum x*Hx among n-qubit states x.

Many important problems in physics take this form.
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One of these is the anti-ferromagnetic Heisenberg
model.

Searching for the minimum energy of this
creates a Hamiltonian maximization problem
that returns half the cut value of any classical
string viewed as a partition.

Anti-ferromagnetic Heisenberg
Also referred to as QUANTUM MAX—CUT. model: roughly neighboring quantum
particles aim to align in opposite
directions.

[Image: Sachdev, arXiv:1203.4565]
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Reducing DIHP to QUuANTUM MAX-CUT

The QUANTUM MAX-CUT value of a graph is always at least 1/2 its MaX-CuUT
value, so a YES instance of DIHP has value m/4. For the NO case we will need the

following SDP:
1 SIRUORO)
This is a shifted version of the Goemans-Williamson SDP for MAaXx-CuT. We use two
properties:
If it is e, QUANTUM MAX-CUT value is m/2 + O(g).
If MAX-CuUT value is m/2 4+ O(e), SDP is O(¢).

So NO instances have QUANTUM MAX-CUT value at most m(1/2+@(1/ﬁ)) too!
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Approximation Factor
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2+¢ 2—¢

Classical Algorithm

Quantum Algorithm

O(logn) Q(n)
O(log n)
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Max-CuT QUANTUM MAXx-CuT

Approximation Factor 2+4+¢ 2—¢ 2+4¢ 2—¢
Classical Algorithm | O(logn) Q(n)
Quantum Algorithm | O(log n)

[Chou, Golovnev, Sudan, Velingker, Velusamy ‘22] gives linear lower bounds for a
larger class of CSPs. Do these results translate?

Weighted QUANTUM MAX-CUT.
Can we sparsify (some) 2-local Hamiltonians?

If we can, can we solve them in O(n) space?



