
Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell
International Inc. for the U.S. Department
of Energy’s National Nuclear Security Ad-

ministration under contract DE-NA0003525.
SAND NO. SAND2022-6928 C

The Quantum and Classical
Streaming Complexity of
Quantum and Classical Max-Cut

Presented by:

John Kallaugher1 Ojas Parekh1

1Sandia National Labs

SAND2022-15249CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2 Streaming Graph Algorithms

Algorithms for graphs received one edge at a time.

= + + +

Theoretical study is mostly concerned with space complexity.

2 Streaming Graph Algorithms

Algorithms for graphs received one edge at a time.

= + + +

Theoretical study is mostly concerned with space complexity.

2 Streaming Graph Algorithms

Algorithms for graphs received one edge at a time.

=

+ + +

Theoretical study is mostly concerned with space complexity.

2 Streaming Graph Algorithms

Algorithms for graphs received one edge at a time.

= +

+ +

Theoretical study is mostly concerned with space complexity.

2 Streaming Graph Algorithms

Algorithms for graphs received one edge at a time.

= + +

+

Theoretical study is mostly concerned with space complexity.

2 Streaming Graph Algorithms

Algorithms for graphs received one edge at a time.

= + + +

Theoretical study is mostly concerned with space complexity.

2 Streaming Graph Algorithms

Algorithms for graphs received one edge at a time.

= + + +

Theoretical study is mostly concerned with space complexity.

3 Max-Cut

G = (V , E), find the largest number of edges crossing any partition V = V1 ⊔ V2.

V1
K = Max-Cut(G) = 8

A canonical example of a constraint satisfaction problem (CSP).
NP-hard to approximate.
How much space does a streaming algorithm need to return K ′ ∈ (K/γ, K)?

3 Max-Cut

G = (V , E), find the largest number of edges crossing any partition V = V1 ⊔ V2.

V1
K = Max-Cut(G) = 8

A canonical example of a constraint satisfaction problem (CSP).
NP-hard to approximate.
How much space does a streaming algorithm need to return K ′ ∈ (K/γ, K)?

3 Max-Cut

G = (V , E), find the largest number of edges crossing any partition V = V1 ⊔ V2.

V1

K = Max-Cut(G) = 8

A canonical example of a constraint satisfaction problem (CSP).
NP-hard to approximate.
How much space does a streaming algorithm need to return K ′ ∈ (K/γ, K)?

3 Max-Cut

G = (V , E), find the largest number of edges crossing any partition V = V1 ⊔ V2.

V1
K = Max-Cut(G) = 8

A canonical example of a constraint satisfaction problem (CSP).
NP-hard to approximate.
How much space does a streaming algorithm need to return K ′ ∈ (K/γ, K)?

3 Max-Cut

G = (V , E), find the largest number of edges crossing any partition V = V1 ⊔ V2.

V1
K = Max-Cut(G) = 8

A canonical example of a constraint satisfaction problem (CSP).

NP-hard to approximate.
How much space does a streaming algorithm need to return K ′ ∈ (K/γ, K)?

3 Max-Cut

G = (V , E), find the largest number of edges crossing any partition V = V1 ⊔ V2.

V1
K = Max-Cut(G) = 8

A canonical example of a constraint satisfaction problem (CSP).
NP-hard to approximate.

How much space does a streaming algorithm need to return K ′ ∈ (K/γ, K)?

3 Max-Cut

G = (V , E), find the largest number of edges crossing any partition V = V1 ⊔ V2.

V1
K = Max-Cut(G) = 8

A canonical example of a constraint satisfaction problem (CSP).
NP-hard to approximate.
How much space does a streaming algorithm need to return K ′ ∈ (K/γ, K)?

4 Streaming Complexity of Max-Cut

2-approximation is trivial in O(log n) space.

(1 + ε)-approximation in eO(n) space with sparsifiers.
Gap gradually closed in [Kogan, Krauthgamer ‘15],
[Kapralov, Khanna, Sudan ‘15], [Kapralov, Khanna, Sudan, Velingker ‘17].
Resolved in [Kapralov, Krachun ‘19]. (2 − ε)-approximation requires Ω(n) space.

4 Streaming Complexity of Max-Cut

2-approximation is trivial in O(log n) space.
(1 + ε)-approximation in eO(n) space with sparsifiers.

Gap gradually closed in [Kogan, Krauthgamer ‘15],
[Kapralov, Khanna, Sudan ‘15], [Kapralov, Khanna, Sudan, Velingker ‘17].
Resolved in [Kapralov, Krachun ‘19]. (2 − ε)-approximation requires Ω(n) space.

4 Streaming Complexity of Max-Cut

2-approximation is trivial in O(log n) space.
(1 + ε)-approximation in eO(n) space with sparsifiers.
Gap gradually closed in [Kogan, Krauthgamer ‘15],
[Kapralov, Khanna, Sudan ‘15], [Kapralov, Khanna, Sudan, Velingker ‘17].

Resolved in [Kapralov, Krachun ‘19]. (2 − ε)-approximation requires Ω(n) space.

4 Streaming Complexity of Max-Cut

2-approximation is trivial in O(log n) space.
(1 + ε)-approximation in eO(n) space with sparsifiers.
Gap gradually closed in [Kogan, Krauthgamer ‘15],
[Kapralov, Khanna, Sudan ‘15], [Kapralov, Khanna, Sudan, Velingker ‘17].
Resolved in [Kapralov, Krachun ‘19]. (2 − ε)-approximation requires Ω(n) space.

5 Our Results

We generalize these results in two directions.

Max-Cut

Quantum Max-Cut

Approximation Factor 2 + ε 2 − ε

2 + ε 2 − ε

Classical Algorithm O(log n) Ω(n)

O(log n) Ω(n)
Quantum Algorithm O(log n) Ω(n) O(log n) Ω(n)

Lower bounds for quantum streaming algorithms.
Key tool: managing the evolution of the Fourier coefficients of a quantum protocol
under the application of a quantum channel.

And for Quantum Max-Cut.
Matching upper bound for (2 + ε)-approximation.

5 Our Results

We generalize these results in two directions.

Max-Cut

Quantum Max-Cut

Approximation Factor 2 + ε 2 − ε

2 + ε 2 − ε

Classical Algorithm O(log n) Ω(n)

O(log n) Ω(n)

Quantum Algorithm O(log n) Ω(n)

O(log n) Ω(n)

Lower bounds for quantum streaming algorithms.

Key tool: managing the evolution of the Fourier coefficients of a quantum protocol
under the application of a quantum channel.

And for Quantum Max-Cut.
Matching upper bound for (2 + ε)-approximation.

5 Our Results

We generalize these results in two directions.

Max-Cut Quantum Max-Cut
Approximation Factor 2 + ε 2 − ε

2 + ε

2 − ε

Classical Algorithm O(log n) Ω(n)

O(log n)

Ω(n)
Quantum Algorithm O(log n) Ω(n)

O(log n)

Ω(n)

Lower bounds for quantum streaming algorithms.
Key tool: managing the evolution of the Fourier coefficients of a quantum protocol
under the application of a quantum channel.

And for Quantum Max-Cut.
Matching upper bound for (2 + ε)-approximation.

5 Our Results

We generalize these results in two directions.

Max-Cut Quantum Max-Cut
Approximation Factor 2 + ε 2 − ε 2 + ε 2 − ε

Classical Algorithm O(log n) Ω(n) O(log n) Ω(n)
Quantum Algorithm O(log n) Ω(n) O(log n) Ω(n)

Lower bounds for quantum streaming algorithms.
Key tool: managing the evolution of the Fourier coefficients of a quantum protocol
under the application of a quantum channel.

And for Quantum Max-Cut.

Matching upper bound for (2 + ε)-approximation.

5 Our Results

We generalize these results in two directions.

Max-Cut Quantum Max-Cut
Approximation Factor 2 + ε 2 − ε 2 + ε 2 − ε

Classical Algorithm O(log n) Ω(n) O(log n) Ω(n)
Quantum Algorithm O(log n) Ω(n) O(log n) Ω(n)

Lower bounds for quantum streaming algorithms.
Key tool: managing the evolution of the Fourier coefficients of a quantum protocol
under the application of a quantum channel.

And for Quantum Max-Cut.
Matching upper bound for (2 + ε)-approximation.

6 Quantum Streaming Algorithms

Streaming algorithms that maintain quantum state.

|0⟩⊗k = ϕ ⇒
u1

Nu1(ϕ) ⇒
u2

Nu2 ◦ Nu1(ϕ)

[Le Gall ‘06], [Gavinsky, Kempe, Kerenidis, Raz, de Wolf ‘08] Exponential space
advantage possible.
[Montanaro ‘16], [Hamoudi, Magniez ‘19], [K. ‘22] Polynomial advantages known
for “natural” problems.

6 Quantum Streaming Algorithms

Streaming algorithms that maintain quantum state.

|0⟩⊗k = ϕ

⇒
u1

Nu1(ϕ) ⇒
u2

Nu2 ◦ Nu1(ϕ)

[Le Gall ‘06], [Gavinsky, Kempe, Kerenidis, Raz, de Wolf ‘08] Exponential space
advantage possible.
[Montanaro ‘16], [Hamoudi, Magniez ‘19], [K. ‘22] Polynomial advantages known
for “natural” problems.

6 Quantum Streaming Algorithms

Streaming algorithms that maintain quantum state.

|0⟩⊗k = ϕ ⇒
u1

Nu1(ϕ)

⇒
u2

Nu2 ◦ Nu1(ϕ)

[Le Gall ‘06], [Gavinsky, Kempe, Kerenidis, Raz, de Wolf ‘08] Exponential space
advantage possible.
[Montanaro ‘16], [Hamoudi, Magniez ‘19], [K. ‘22] Polynomial advantages known
for “natural” problems.

6 Quantum Streaming Algorithms

Streaming algorithms that maintain quantum state.

|0⟩⊗k = ϕ ⇒
u1

Nu1(ϕ) ⇒
u2

Nu2 ◦ Nu1(ϕ)

[Le Gall ‘06], [Gavinsky, Kempe, Kerenidis, Raz, de Wolf ‘08] Exponential space
advantage possible.
[Montanaro ‘16], [Hamoudi, Magniez ‘19], [K. ‘22] Polynomial advantages known
for “natural” problems.

6 Quantum Streaming Algorithms

Streaming algorithms that maintain quantum state.

|0⟩⊗k = ϕ ⇒
u1

Nu1(ϕ) ⇒
u2

Nu2 ◦ Nu1(ϕ)

[Le Gall ‘06], [Gavinsky, Kempe, Kerenidis, Raz, de Wolf ‘08] Exponential space
advantage possible.

[Montanaro ‘16], [Hamoudi, Magniez ‘19], [K. ‘22] Polynomial advantages known
for “natural” problems.

6 Quantum Streaming Algorithms

Streaming algorithms that maintain quantum state.

|0⟩⊗k = ϕ ⇒
u1

Nu1(ϕ) ⇒
u2

Nu2 ◦ Nu1(ϕ)

[Le Gall ‘06], [Gavinsky, Kempe, Kerenidis, Raz, de Wolf ‘08] Exponential space
advantage possible.
[Montanaro ‘16], [Hamoudi, Magniez ‘19], [K. ‘22] Polynomial advantages known
for “natural” problems.

7 Distributed Implicit Hidden Partition (DIHP)

Introduced in [Kapralov, Krachun ‘19].

YES: NO:

T -player sequential communication game. Player t gets a random partial
matching Mt on αn vertices, |V | = n, α = Θ(1/

√
α).

YES case: there is a secret string x ∈ {0, 1}V . Player t gets y = Mtx , i.e.
yuv = xu ⊕ xv for each edge uv ∈ Mt .
NO case: Player t gets y ∈ {0, 1}Mt at random.

7 Distributed Implicit Hidden Partition (DIHP)

Introduced in [Kapralov, Krachun ‘19].

YES: NO:

T -player sequential communication game. Player t gets a random partial
matching Mt on αn vertices, |V | = n, α = Θ(1/

√
α).

YES case: there is a secret string x ∈ {0, 1}V . Player t gets y = Mtx , i.e.
yuv = xu ⊕ xv for each edge uv ∈ Mt .
NO case: Player t gets y ∈ {0, 1}Mt at random.

7 Distributed Implicit Hidden Partition (DIHP)

Introduced in [Kapralov, Krachun ‘19].

YES:

NO:

T -player sequential communication game. Player t gets a random partial
matching Mt on αn vertices, |V | = n, α = Θ(1/

√
α).

YES case: there is a secret string x ∈ {0, 1}V . Player t gets y = Mtx , i.e.
yuv = xu ⊕ xv for each edge uv ∈ Mt .

NO case: Player t gets y ∈ {0, 1}Mt at random.

7 Distributed Implicit Hidden Partition (DIHP)

Introduced in [Kapralov, Krachun ‘19].

YES: NO:

T -player sequential communication game. Player t gets a random partial
matching Mt on αn vertices, |V | = n, α = Θ(1/

√
α).

YES case: there is a secret string x ∈ {0, 1}V . Player t gets y = Mtx , i.e.
yuv = xu ⊕ xv for each edge uv ∈ Mt .
NO case: Player t gets y ∈ {0, 1}Mt at random.

8 Reduction from Max-Cut

Consider the graph of the m edges labelled 1.

YES: NO:

YES case: x gives a perfect cut of this graph.
NO case: Graph is close to random, best cut is m(1/2 + Θ

�
1/

√
T
�
).

DIHP reduces to (2 − Θ
�
1/

√
T
�
) approximating Max-Cut.

8 Reduction from Max-Cut

Consider the graph of the m edges labelled 1.

YES: NO:

YES case: x gives a perfect cut of this graph.

NO case: Graph is close to random, best cut is m(1/2 + Θ
�
1/

√
T
�
).

DIHP reduces to (2 − Θ
�
1/

√
T
�
) approximating Max-Cut.

8 Reduction from Max-Cut

Consider the graph of the m edges labelled 1.

YES: NO:

YES case: x gives a perfect cut of this graph.
NO case: Graph is close to random, best cut is m(1/2 + Θ

�
1/

√
T
�
).

DIHP reduces to (2 − Θ
�
1/

√
T
�
) approximating Max-Cut.

8 Reduction from Max-Cut

Consider the graph of the m edges labelled 1.

YES: NO:

YES case: x gives a perfect cut of this graph.
NO case: Graph is close to random, best cut is m(1/2 + Θ

�
1/

√
T
�
).

DIHP reduces to (2 − Θ
�
1/

√
T
�
) approximating Max-Cut.

9 Fourier Coefficients

[Kapralov, Krachun ‘19] Solving DIHP requires learning many even parities of the
underlying partition (if there is one).

Intuition: in a YES case, each edge label given to player t is “consistent” with
the corresponding vertex labels.
The “knowledge” player t has about these parities can be quantified in terms of
Fourier coefficients.

9 Fourier Coefficients

[Kapralov, Krachun ‘19] Solving DIHP requires learning many even parities of the
underlying partition (if there is one).

Intuition: in a YES case, each edge label given to player t is “consistent” with
the corresponding vertex labels.

The “knowledge” player t has about these parities can be quantified in terms of
Fourier coefficients.

9 Fourier Coefficients

[Kapralov, Krachun ‘19] Solving DIHP requires learning many even parities of the
underlying partition (if there is one).

Intuition: in a YES case, each edge label given to player t is “consistent” with
the corresponding vertex labels.
The “knowledge” player t has about these parities can be quantified in terms of
Fourier coefficients.

10 Fourier Analysis (of Quantum Protocols)

Given a protocol, we can write down a function ft : {0, 1}n → Cβ×β that gives the
density matrix ft(x) of player t’s message if the problem is in a YES state with vertex
labels x .

ft−1(x) ⇒ BQ

⇒

Mtx

⇒ ft(x)

For each set S of vertices we consider the Fourier coefficient bft(S) = Ex
�
(−1)S·x ft(x)

�
.

10 Fourier Analysis (of Quantum Protocols)

Given a protocol, we can write down a function ft : {0, 1}n → Cβ×β that gives the
density matrix ft(x) of player t’s message if the problem is in a YES state with vertex
labels x .

ft−1(x) ⇒ BQ

⇒

Mtx

⇒ ft(x)

For each set S of vertices we consider the Fourier coefficient bft(S) = Ex
�
(−1)S·x ft(x)

�
.

10 Fourier Analysis (of Quantum Protocols)

Given a protocol, we can write down a function ft : {0, 1}n → Cβ×β that gives the
density matrix ft(x) of player t’s message if the problem is in a YES state with vertex
labels x .

ft−1(x) ⇒ BQ

⇒

Mtx

⇒ ft(x)

For each set S of vertices we consider the Fourier coefficient bft(S) = Ex
�
(−1)S·x ft(x)

�
.

11 Hypercontractivity

Suppose player t ignored everything from player t − 1. Then we would have

X
|S|=k

∥bft(S)∥2
1 ≤

β

k

!

for β-qubit messages by hypercontractivity.

This would suffice to make player t + 1 learn very little if β ≪ n.
But we need to control how player t incorporates a message from player t.

11 Hypercontractivity

Suppose player t ignored everything from player t − 1. Then we would have

X
|S|=k

∥bft(S)∥2
1 ≤

β

k

!

for β-qubit messages by hypercontractivity.
This would suffice to make player t + 1 learn very little if β ≪ n.

But we need to control how player t incorporates a message from player t.

11 Hypercontractivity

Suppose player t ignored everything from player t − 1. Then we would have

X
|S|=k

∥bft(S)∥2
1 ≤

β

k

!

for β-qubit messages by hypercontractivity.
This would suffice to make player t + 1 learn very little if β ≪ n.
But we need to control how player t incorporates a message from player t.

12 Evolution of Fourier Coefficients

A key ingredient of the classical proof is the fact that, because the input distribution is
known, the protocol can be assumed to be deterministic.

ft−1(x) ⇒ B

⇒

Mtx

⇒ a(ft−1(x), Mtx)

In the quantum setting the possibility of e.g. measurements means that we have to
consider player t applying an arbitrary quantum channel.

12 Evolution of Fourier Coefficients

A key ingredient of the classical proof is the fact that, because the input distribution is
known, the protocol can be assumed to be deterministic.

ft−1(x) ⇒ B

⇒

Mtx

⇒ a(ft−1(x), Mtx)

In the quantum setting the possibility of e.g. measurements means that we have to
consider player t applying an arbitrary quantum channel.

12 Evolution of Fourier Coefficients

A key ingredient of the classical proof is the fact that, because the input distribution is
known, the protocol can be assumed to be deterministic.

ft−1(x) ⇒ B

⇒

Mtx

⇒ a(ft−1(x), Mtx)

In the quantum setting the possibility of e.g. measurements means that we have to
consider player t applying an arbitrary quantum channel.

13 Quantum Channels

A quantum channel represents any realizable transformation of a density matrix on β
qubits.

ft−1(x) ⇒ BQ

⇒

Mtx

⇒ At
Mtx(ft−1(x))

Our idea is to apply Fourier analysis to the family of channels each player might apply.

13 Quantum Channels

A quantum channel represents any realizable transformation of a density matrix on β
qubits.

ft−1(x) ⇒ BQ

⇒

Mtx

⇒ At
Mtx(ft−1(x))

Our idea is to apply Fourier analysis to the family of channels each player might apply.

14 Fourier Transform of a Quantum Channel

Let (Ny)y∈{0,1}n be a family of channels. We extend the Boolean Fourier transform by
defining: cNS = E

y

h
(−1)S·y Ny

i

A convolution theorem (analogous to one for products of scalar-valued functions)
applies: dN f (S) =

X
U∈{0,1}n

cNUbf (U ⊕ S)

14 Fourier Transform of a Quantum Channel

Let (Ny)y∈{0,1}n be a family of channels. We extend the Boolean Fourier transform by
defining: cNS = E

y

h
(−1)S·y Ny

i
A convolution theorem (analogous to one for products of scalar-valued functions)
applies: dN f (S) =

X
U∈{0,1}n

cNUbf (U ⊕ S)

15 Fourier Coefficients Under Quantum Evolution

Ey
�
(−1)S·y ft(x)

�
is non-zero iff U corresponds to a set of edges in Mt .

✓ ✗

So each Fourier coefficient bft−1(S) can be seen as generating one Fourier coefficientbft(S ⊕ Mtr
t y) for each subset y of Mt .

15 Fourier Coefficients Under Quantum Evolution

Ey
�
(−1)S·y ft(x)

�
is non-zero iff U corresponds to a set of edges in Mt .

✓ ✗

So each Fourier coefficient bft−1(S) can be seen as generating one Fourier coefficientbft(S ⊕ Mtr
t y) for each subset y of Mt .

16 DIHP Lower Bound

Combinatorics and matrix hypercontractivity gives us that ∥ft−1(S)∥1 will be small for
all S matched by player t’s edges if # of qubits β ≪ n/21/T .

DIHP requires n/21/T (qu)bits of quantum or classical communication.
So (2 − ε)-approximation of Max-Cut requires n/2O(ε) space.

16 DIHP Lower Bound

Combinatorics and matrix hypercontractivity gives us that ∥ft−1(S)∥1 will be small for
all S matched by player t’s edges if # of qubits β ≪ n/21/T .

DIHP requires n/21/T (qu)bits of quantum or classical communication.

So (2 − ε)-approximation of Max-Cut requires n/2O(ε) space.

16 DIHP Lower Bound

Combinatorics and matrix hypercontractivity gives us that ∥ft−1(S)∥1 will be small for
all S matched by player t’s edges if # of qubits β ≪ n/21/T .

DIHP requires n/21/T (qu)bits of quantum or classical communication.
So (2 − ε)-approximation of Max-Cut requires n/2O(ε) space.

17 Quantum Generalizations of CSPs

The quantum generalization of a constraint satisfaction problem is a local Hamiltonian
problem.

H =
X

I ⊗ L

A sum of “local” terms operating on a small number of qubits each.
Objective is to find minimum/maximum x∗Hx among n-qubit states x .
Many important problems in physics take this form.

17 Quantum Generalizations of CSPs

The quantum generalization of a constraint satisfaction problem is a local Hamiltonian
problem.

H =
X

I ⊗ L

A sum of “local” terms operating on a small number of qubits each.

Objective is to find minimum/maximum x∗Hx among n-qubit states x .
Many important problems in physics take this form.

17 Quantum Generalizations of CSPs

The quantum generalization of a constraint satisfaction problem is a local Hamiltonian
problem.

H =
X

I ⊗ L

A sum of “local” terms operating on a small number of qubits each.
Objective is to find minimum/maximum x∗Hx among n-qubit states x .

Many important problems in physics take this form.

17 Quantum Generalizations of CSPs

The quantum generalization of a constraint satisfaction problem is a local Hamiltonian
problem.

H =
X

I ⊗ L

A sum of “local” terms operating on a small number of qubits each.
Objective is to find minimum/maximum x∗Hx among n-qubit states x .
Many important problems in physics take this form.

18 Quantum Max-Cut

One of these is the anti-ferromagnetic Heisenberg
model.

Searching for the minimum energy of this
creates a Hamiltonian maximization problem
that returns half the cut value of any classical
string viewed as a partition.
Also referred to as Quantum Max-Cut.

Figure: Anti-ferromagnetic Heisenberg
model: roughly neighboring quantum
particles aim to align in opposite
directions.
[Image: Sachdev, arXiv:1203.4565]

18 Quantum Max-Cut

One of these is the anti-ferromagnetic Heisenberg
model.

Searching for the minimum energy of this
creates a Hamiltonian maximization problem
that returns half the cut value of any classical
string viewed as a partition.

Also referred to as Quantum Max-Cut.
Figure: Anti-ferromagnetic Heisenberg
model: roughly neighboring quantum
particles aim to align in opposite
directions.
[Image: Sachdev, arXiv:1203.4565]

18 Quantum Max-Cut

One of these is the anti-ferromagnetic Heisenberg
model.

Searching for the minimum energy of this
creates a Hamiltonian maximization problem
that returns half the cut value of any classical
string viewed as a partition.
Also referred to as Quantum Max-Cut.

Figure: Anti-ferromagnetic Heisenberg
model: roughly neighboring quantum
particles aim to align in opposite
directions.
[Image: Sachdev, arXiv:1203.4565]

19 Reducing DIHP to Quantum Max-Cut

The Quantum Max-Cut value of a graph is always at least 1/2 its Max-Cut
value, so a YES instance of DIHP has value m/4.

For the NO case we will need the
following SDP:

max
f :V →Sn−1

X
uv∈E

−⟨f (u), f (v)⟩

This is a shifted version of the Goemans-Williamson SDP for Max-Cut. We use two
properties:

If it is ε, Quantum Max-Cut value is m/2 + O(ε).
If Max-Cut value is m/2 + O(ε), SDP is O(ε).

So NO instances have Quantum Max-Cut value at most m(1/2 + Θ
�
1/

√
T
�
) too!

19 Reducing DIHP to Quantum Max-Cut

The Quantum Max-Cut value of a graph is always at least 1/2 its Max-Cut
value, so a YES instance of DIHP has value m/4. For the NO case we will need the
following SDP:

max
f :V →Sn−1

X
uv∈E

−⟨f (u), f (v)⟩

This is a shifted version of the Goemans-Williamson SDP for Max-Cut. We use two
properties:

If it is ε, Quantum Max-Cut value is m/2 + O(ε).
If Max-Cut value is m/2 + O(ε), SDP is O(ε).

So NO instances have Quantum Max-Cut value at most m(1/2 + Θ
�
1/

√
T
�
) too!

19 Reducing DIHP to Quantum Max-Cut

The Quantum Max-Cut value of a graph is always at least 1/2 its Max-Cut
value, so a YES instance of DIHP has value m/4. For the NO case we will need the
following SDP:

max
f :V →Sn−1

X
uv∈E

−⟨f (u), f (v)⟩

This is a shifted version of the Goemans-Williamson SDP for Max-Cut. We use two
properties:

If it is ε, Quantum Max-Cut value is m/2 + O(ε).
If Max-Cut value is m/2 + O(ε), SDP is O(ε).

So NO instances have Quantum Max-Cut value at most m(1/2 + Θ
�
1/

√
T
�
) too!

19 Reducing DIHP to Quantum Max-Cut

The Quantum Max-Cut value of a graph is always at least 1/2 its Max-Cut
value, so a YES instance of DIHP has value m/4. For the NO case we will need the
following SDP:

max
f :V →Sn−1

X
uv∈E

−⟨f (u), f (v)⟩

This is a shifted version of the Goemans-Williamson SDP for Max-Cut. We use two
properties:

If it is ε, Quantum Max-Cut value is m/2 + O(ε).

If Max-Cut value is m/2 + O(ε), SDP is O(ε).
So NO instances have Quantum Max-Cut value at most m(1/2 + Θ

�
1/

√
T
�
) too!

19 Reducing DIHP to Quantum Max-Cut

The Quantum Max-Cut value of a graph is always at least 1/2 its Max-Cut
value, so a YES instance of DIHP has value m/4. For the NO case we will need the
following SDP:

max
f :V →Sn−1

X
uv∈E

−⟨f (u), f (v)⟩

This is a shifted version of the Goemans-Williamson SDP for Max-Cut. We use two
properties:

If it is ε, Quantum Max-Cut value is m/2 + O(ε).
If Max-Cut value is m/2 + O(ε), SDP is O(ε).

So NO instances have Quantum Max-Cut value at most m(1/2 + Θ
�
1/

√
T
�
) too!

19 Reducing DIHP to Quantum Max-Cut

The Quantum Max-Cut value of a graph is always at least 1/2 its Max-Cut
value, so a YES instance of DIHP has value m/4. For the NO case we will need the
following SDP:

max
f :V →Sn−1

X
uv∈E

−⟨f (u), f (v)⟩

This is a shifted version of the Goemans-Williamson SDP for Max-Cut. We use two
properties:

If it is ε, Quantum Max-Cut value is m/2 + O(ε).
If Max-Cut value is m/2 + O(ε), SDP is O(ε).

So NO instances have Quantum Max-Cut value at most m(1/2 + Θ
�
1/

√
T
�
) too!

20 Conclusion

Max-Cut Quantum Max-Cut
Approximation Factor 2 + ε 2 − ε 2 + ε 2 − ε

Classical Algorithm O(log n) Ω(n) O(log n) Ω(n)
Quantum Algorithm O(log n) Ω(n) O(log n) Ω(n)

[Chou, Golovnev, Sudan, Velingker, Velusamy ‘22] gives linear lower bounds for a
larger class of CSPs. Do these results translate?
Weighted Quantum Max-Cut.
Can we sparsify (some) 2-local Hamiltonians?
If we can, can we solve them in O(n) space?

20 Conclusion

Max-Cut Quantum Max-Cut
Approximation Factor 2 + ε 2 − ε 2 + ε 2 − ε

Classical Algorithm O(log n) Ω(n) O(log n) Ω(n)
Quantum Algorithm O(log n) Ω(n) O(log n) Ω(n)

[Chou, Golovnev, Sudan, Velingker, Velusamy ‘22] gives linear lower bounds for a
larger class of CSPs. Do these results translate?

Weighted Quantum Max-Cut.
Can we sparsify (some) 2-local Hamiltonians?
If we can, can we solve them in O(n) space?

20 Conclusion

Max-Cut Quantum Max-Cut
Approximation Factor 2 + ε 2 − ε 2 + ε 2 − ε

Classical Algorithm O(log n) Ω(n) O(log n) Ω(n)
Quantum Algorithm O(log n) Ω(n) O(log n) Ω(n)

[Chou, Golovnev, Sudan, Velingker, Velusamy ‘22] gives linear lower bounds for a
larger class of CSPs. Do these results translate?
Weighted Quantum Max-Cut.

Can we sparsify (some) 2-local Hamiltonians?
If we can, can we solve them in O(n) space?

20 Conclusion

Max-Cut Quantum Max-Cut
Approximation Factor 2 + ε 2 − ε 2 + ε 2 − ε

Classical Algorithm O(log n) Ω(n) O(log n) Ω(n)
Quantum Algorithm O(log n) Ω(n) O(log n) Ω(n)

[Chou, Golovnev, Sudan, Velingker, Velusamy ‘22] gives linear lower bounds for a
larger class of CSPs. Do these results translate?
Weighted Quantum Max-Cut.
Can we sparsify (some) 2-local Hamiltonians?

If we can, can we solve them in O(n) space?

20 Conclusion

Max-Cut Quantum Max-Cut
Approximation Factor 2 + ε 2 − ε 2 + ε 2 − ε

Classical Algorithm O(log n) Ω(n) O(log n) Ω(n)
Quantum Algorithm O(log n) Ω(n) O(log n) Ω(n)

[Chou, Golovnev, Sudan, Velingker, Velusamy ‘22] gives linear lower bounds for a
larger class of CSPs. Do these results translate?
Weighted Quantum Max-Cut.
Can we sparsify (some) 2-local Hamiltonians?
If we can, can we solve them in O(n) space?

