



National  
Laboratories

# The Quantum and Classical Streaming Complexity of Quantum and Classical Max-Cut



*Presented by:*

John Kallaughher<sup>1</sup>   Ojas Parekh<sup>1</sup>



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Algorithms for graphs received *one edge at a time*.



Algorithms for graphs received *one edge at a time*.



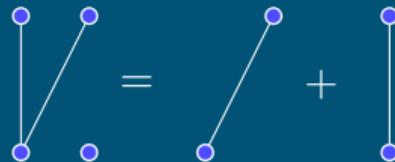


Algorithms for graphs received *one edge at a time*.



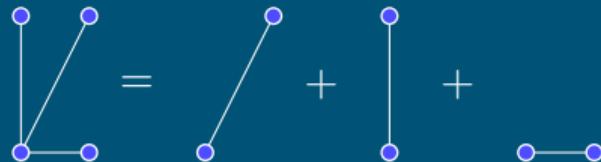


Algorithms for graphs received *one edge at a time*.





Algorithms for graphs received *one edge at a time*.





Algorithms for graphs received *one edge at a time*.





Algorithms for graphs received *one edge at a time*.



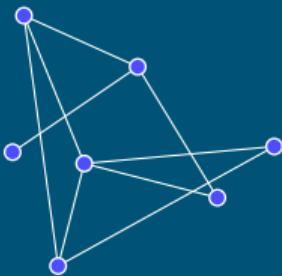
Theoretical study is mostly concerned with *space complexity*.



$G = (V, E)$ , find the largest number of edges crossing any partition  $V = V_1 \sqcup V_2$ .

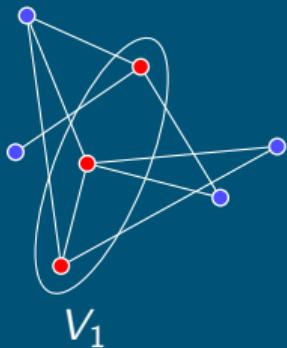


$G = (V, E)$ , find the largest number of edges crossing any partition  $V = V_1 \sqcup V_2$ .



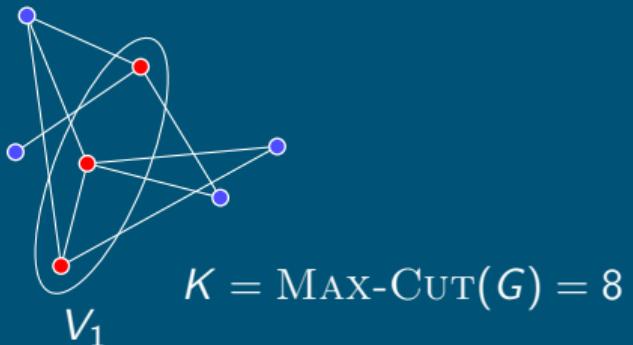


$G = (V, E)$ , find the largest number of edges crossing any partition  $V = V_1 \sqcup V_2$ .



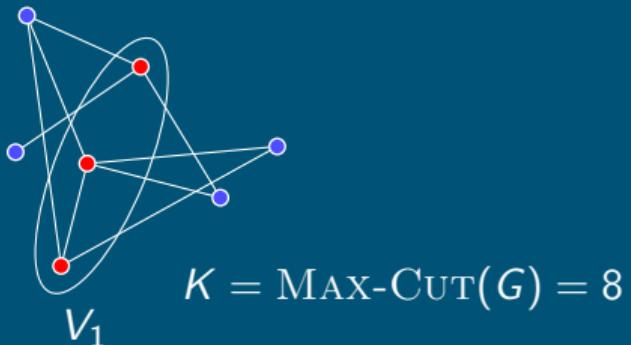


$G = (V, E)$ , find the largest number of edges crossing any partition  $V = V_1 \sqcup V_2$ .





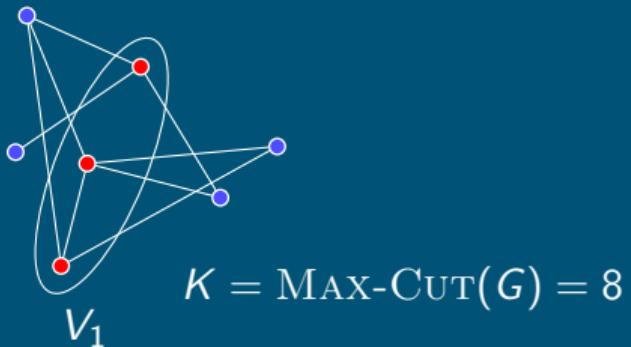
$G = (V, E)$ , find the largest number of edges crossing any partition  $V = V_1 \sqcup V_2$ .



- A canonical example of a *constraint satisfaction problem* (CSP).

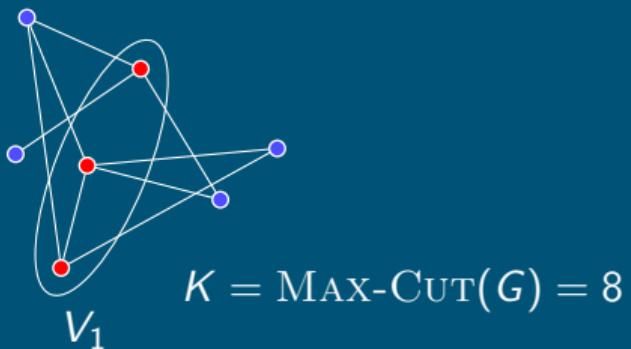


$G = (V, E)$ , find the largest number of edges crossing any partition  $V = V_1 \sqcup V_2$ .



- A canonical example of a *constraint satisfaction problem* (CSP).
- NP-hard to approximate.

$G = (V, E)$ , find the largest number of edges crossing any partition  $V = V_1 \sqcup V_2$ .



- A canonical example of a *constraint satisfaction problem* (CSP).
- NP-hard to approximate.
- How much space does a streaming algorithm need to return  $K' \in (K/\gamma, K)$ ?



- 2-approximation is trivial in  $O(\log n)$  space.



- 2-approximation is trivial in  $O(\log n)$  space.
- $(1 + \varepsilon)$ -approximation in  $\tilde{O}(n)$  space with sparsifiers.



- 2-approximation is trivial in  $O(\log n)$  space.
- $(1 + \varepsilon)$ -approximation in  $\tilde{O}(n)$  space with sparsifiers.
- Gap gradually closed in [Kogan, Krauthgamer '15],  
[Kapralov, Khanna, Sudan '15], [Kapralov, Khanna, Sudan, Velingker '17].



- 2-approximation is trivial in  $O(\log n)$  space.
- $(1 + \varepsilon)$ -approximation in  $\tilde{O}(n)$  space with sparsifiers.
- Gap gradually closed in [Kogan, Krauthgamer '15],  
[Kapralov, Khanna, Sudan '15], [Kapralov, Khanna, Sudan, Velingker '17].
- Resolved in [Kapralov, Krachun '19].  $(2 - \varepsilon)$ -approximation requires  $\Omega(n)$  space.

## Our Results



We generalize these results in two directions.

|                      | MAX-CUT           |                   |
|----------------------|-------------------|-------------------|
| Approximation Factor | $2 + \varepsilon$ | $2 - \varepsilon$ |
| Classical Algorithm  | $O(\log n)$       | $\Omega(n)$       |

# Our Results



We generalize these results in two directions.

|                      | MAX-CUT           |                   |
|----------------------|-------------------|-------------------|
| Approximation Factor | $2 + \varepsilon$ | $2 - \varepsilon$ |
| Classical Algorithm  | $O(\log n)$       | $\Omega(n)$       |
| Quantum Algorithm    | $O(\log n)$       | $\Omega(n)$       |

- Lower bounds for *quantum* streaming algorithms.

## Our Results



We generalize these results in two directions.

|                      | MAX-CUT           |                   | QUANTUM MAX-CUT   |
|----------------------|-------------------|-------------------|-------------------|
| Approximation Factor | $2 + \varepsilon$ | $2 - \varepsilon$ | $2 - \varepsilon$ |
| Classical Algorithm  | $O(\log n)$       | $\Omega(n)$       | $\Omega(n)$       |
| Quantum Algorithm    | $O(\log n)$       | $\Omega(n)$       | $\Omega(n)$       |

- Lower bounds for *quantum* streaming algorithms.
  - Key tool: managing the evolution of the Fourier coefficients of a quantum protocol under the application of a quantum channel.



We generalize these results in two directions.

|                      | MAX-CUT           |                   | QUANTUM MAX-CUT   |                   |
|----------------------|-------------------|-------------------|-------------------|-------------------|
| Approximation Factor | $2 + \varepsilon$ | $2 - \varepsilon$ | $2 + \varepsilon$ | $2 - \varepsilon$ |
| Classical Algorithm  | $O(\log n)$       | $\Omega(n)$       | $O(\log n)$       | $\Omega(n)$       |
| Quantum Algorithm    | $O(\log n)$       | $\Omega(n)$       | $O(\log n)$       | $\Omega(n)$       |

- Lower bounds for *quantum* streaming algorithms.
  - Key tool: managing the evolution of the Fourier coefficients of a quantum protocol under the application of a quantum channel.
- And for QUANTUM MAX-CUT.



We generalize these results in two directions.

|                      | MAX-CUT           |                   | QUANTUM MAX-CUT   |                   |
|----------------------|-------------------|-------------------|-------------------|-------------------|
| Approximation Factor | $2 + \varepsilon$ | $2 - \varepsilon$ | $2 + \varepsilon$ | $2 - \varepsilon$ |
| Classical Algorithm  | $O(\log n)$       | $\Omega(n)$       | $O(\log n)$       | $\Omega(n)$       |
| Quantum Algorithm    | $O(\log n)$       | $\Omega(n)$       | $O(\log n)$       | $\Omega(n)$       |

- Lower bounds for *quantum* streaming algorithms.
  - Key tool: managing the evolution of the Fourier coefficients of a quantum protocol under the application of a quantum channel.
- And for QUANTUM MAX-CUT.
  - Matching upper bound for  $(2 + \varepsilon)$ -approximation.



Streaming algorithms that maintain *quantum* state.



Streaming algorithms that maintain *quantum* state.

$$|0\rangle^{\otimes k} = \phi$$



Streaming algorithms that maintain *quantum* state.

$$|0\rangle^{\otimes k} = \phi \xrightarrow{u_1} \mathcal{N}_{u_1}(\phi)$$



Streaming algorithms that maintain *quantum* state.

$$|0\rangle^{\otimes k} = \phi \xrightarrow{u_1} \mathcal{N}_{u_1}(\phi) \xrightarrow{u_2} \mathcal{N}_{u_2} \circ \mathcal{N}_{u_1}(\phi)$$



Streaming algorithms that maintain *quantum* state.

$$|0\rangle^{\otimes k} = \phi \xrightarrow{u_1} \mathcal{N}_{u_1}(\phi) \xrightarrow{u_2} \mathcal{N}_{u_2} \circ \mathcal{N}_{u_1}(\phi)$$

- [Le Gall '06], [Gavinsky, Kempe, Kerenidis, Raz, de Wolf '08] Exponential space advantage possible.



Streaming algorithms that maintain *quantum* state.

$$|0\rangle^{\otimes k} = \phi \xrightarrow{u_1} \mathcal{N}_{u_1}(\phi) \xrightarrow{u_2} \mathcal{N}_{u_2} \circ \mathcal{N}_{u_1}(\phi)$$

- [Le Gall '06], [Gavinsky, Kempe, Kerenidis, Raz, de Wolf '08] Exponential space advantage possible.
- [Montanaro '16], [Hamoudi, Magniez '19], [K. '22] Polynomial advantages known for “natural” problems.

## Distributed Implicit Hidden Partition (DIHP)



Introduced in [Kapralov, Krachun '19].

## Distributed Implicit Hidden Partition (DIHP)



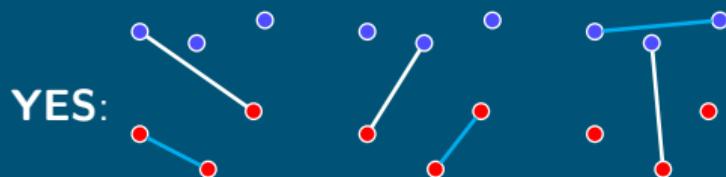
Introduced in [Kapralov, Krachun '19].

- $T$ -player sequential communication game. Player  $t$  gets a random partial matching  $M_t$  on  $\alpha n$  vertices,  $|V| = n$ ,  $\alpha = \Theta(1/\sqrt{\alpha})$ .

## Distributed Implicit Hidden Partition (DIHP)



Introduced in [Kapralov, Krachun '19].



- $T$ -player sequential communication game. Player  $t$  gets a random partial matching  $M_t$  on  $\alpha n$  vertices,  $|V| = n$ ,  $\alpha = \Theta(1/\sqrt{\alpha})$ .
- **YES** case: there is a secret string  $x \in \{0, 1\}^V$ . Player  $t$  gets  $y = M_t x$ , i.e.  $y_{uv} = x_u \oplus x_v$  for each edge  $uv \in M_t$ .

# Distributed Implicit Hidden Partition (DIHP)



Introduced in [Kapralov, Krachun '19].



- $T$ -player sequential communication game. Player  $t$  gets a random partial matching  $M_t$  on  $\alpha n$  vertices,  $|V| = n$ ,  $\alpha = \Theta(1/\sqrt{\alpha})$ .
- **YES** case: there is a secret string  $x \in \{0, 1\}^V$ . Player  $t$  gets  $y = M_t x$ , i.e.  $y_{uv} = x_u \oplus x_v$  for each edge  $uv \in M_t$ .
- **NO** case: Player  $t$  gets  $y \in \{0, 1\}^{M_t}$  at random.

## Reduction from MAX-CUT



Consider the graph of the  $m$  edges labelled 1.



Consider the graph of the  $m$  edges labelled 1.



- **YES** case:  $x$  gives a perfect cut of this graph.

## Reduction from MAX-CUT



Consider the graph of the  $m$  edges labelled 1.



- **YES** case:  $x$  gives a perfect cut of this graph.
- **NO** case: Graph is close to random, best cut is  $m(1/2 + \Theta(1/\sqrt{T}))$ .

## Reduction from MAX-CUT



Consider the graph of the  $m$  edges labelled 1.



- **YES** case:  $x$  gives a perfect cut of this graph.
- **NO** case: Graph is close to random, best cut is  $m(1/2 + \Theta(1/\sqrt{T}))$ .
- DIHP reduces to  $(2 - \Theta(1/\sqrt{T}))$  approximating MAX-CUT.



[Kapralov, Krachun '19] Solving DIHP requires learning many even parities of the underlying partition (if there is one).



[Kaprалов, Krachun '19] Solving DIHP requires learning many even parities of the underlying partition (if there is one).

- Intuition: in a **YES** case, each edge label given to player  $t$  is “consistent” with the corresponding vertex labels.



[Kaprалов, Krachun '19] Solving DIHP requires learning many even parities of the underlying partition (if there is one).

- Intuition: in a **YES** case, each edge label given to player  $t$  is “consistent” with the corresponding vertex labels.
- The “knowledge” player  $t$  has about these parities can be quantified in terms of *Fourier coefficients*.



Given a protocol, we can write down a function  $f_t : \{0, 1\}^n \rightarrow \mathbb{C}^{\beta \times \beta}$  that gives the density matrix  $f_t(x)$  of player  $t$ 's message if the problem is in a **YES** state with vertex labels  $x$ .



Given a protocol, we can write down a function  $f_t : \{0, 1\}^n \rightarrow \mathbb{C}^{\beta \times \beta}$  that gives the density matrix  $f_t(x)$  of player  $t$ 's message if the problem is in a **YES** state with vertex labels  $x$ .

$$f_{t-1}(x) \Rightarrow \boxed{Q} \Rightarrow f_t(x)$$



$$M_t x$$



Given a protocol, we can write down a function  $f_t : \{0, 1\}^n \rightarrow \mathbb{C}^{\beta \times \beta}$  that gives the density matrix  $f_t(x)$  of player  $t$ 's message if the problem is in a **YES** state with vertex labels  $x$ .

$$f_{t-1}(x) \Rightarrow \boxed{Q} \Rightarrow f_t(x)$$



$$M_t x$$

For each set  $S$  of vertices we consider the *Fourier coefficient*  $\widehat{f}_t(S) = \mathbb{E}_x [(-1)^{S \cdot x} f_t(x)]$ .



Suppose player  $t$  ignored everything from player  $t - 1$ . Then we would have

$$\sum_{|S|=k} \|\hat{f}_t(S)\|_1^2 \leq \binom{\beta}{k}$$

for  $\beta$ -qubit messages by *hypercontractivity*.



Suppose player  $t$  ignored everything from player  $t - 1$ . Then we would have

$$\sum_{|S|=k} \|\hat{f}_t(S)\|_1^2 \leq \binom{\beta}{k}$$

for  $\beta$ -qubit messages by *hypercontractivity*.

- This would suffice to make player  $t + 1$  learn very little if  $\beta \ll n$ .



Suppose player  $t$  ignored everything from player  $t - 1$ . Then we would have

$$\sum_{|S|=k} \|\hat{f}_t(S)\|_1^2 \leq \binom{\beta}{k}$$

for  $\beta$ -qubit messages by *hypercontractivity*.

- This would suffice to make player  $t + 1$  learn very little if  $\beta \ll n$ .
- But we need to control how player  $t$  incorporates a message from player  $t$ .



A key ingredient of the classical proof is the fact that, because the input distribution is known, the protocol can be assumed to be *deterministic*.



A key ingredient of the classical proof is the fact that, because the input distribution is known, the protocol can be assumed to be *deterministic*.

$$f_{t-1}(x) \Rightarrow \text{monitor icon} \Rightarrow a(f_{t-1}(x), M_t x)$$

↑

$$M_t x$$



A key ingredient of the classical proof is the fact that, because the input distribution is known, the protocol can be assumed to be *deterministic*.

$$f_{t-1}(x) \Rightarrow \text{monitor} \Rightarrow a(f_{t-1}(x), M_t x)$$

↑

$$M_t x$$

In the quantum setting the possibility of e.g. measurements means that we have to consider player  $t$  applying an arbitrary *quantum channel*.



A quantum channel represents any realizable transformation of a density matrix on  $\beta$  qubits.

$$f_{t-1}(x) \Rightarrow \boxed{\mathcal{Q}} \Rightarrow \mathcal{A}_{M_t x}^t(f_{t-1}(x))$$



$$M_t x$$



A quantum channel represents any realizable transformation of a density matrix on  $\beta$  qubits.

$$f_{t-1}(x) \Rightarrow \mathcal{Q} \Rightarrow \mathcal{A}_{M_t x}^t(f_{t-1}(x))$$



$$M_t x$$

Our idea is to apply Fourier analysis to the family of channels each player might apply.



Let  $(\mathcal{N}_y)_{y \in \{0,1\}^n}$  be a family of channels. We extend the Boolean Fourier transform by defining:

$$\widehat{\mathcal{N}}_S = \mathbb{E}_y \left[ (-1)^{S \cdot y} \mathcal{N}_y \right]$$



Let  $(\mathcal{N}_y)_{y \in \{0,1\}^n}$  be a family of channels. We extend the Boolean Fourier transform by defining:

$$\widehat{\mathcal{N}}_S = \mathbb{E}_y \left[ (-1)^{S \cdot y} \mathcal{N}_y \right]$$

A convolution theorem (analogous to one for products of scalar-valued functions) applies:

$$\widehat{\mathcal{N}f}(S) = \sum_{U \in \{0,1\}^n} \widehat{\mathcal{N}_U f}(U \oplus S)$$



$\mathbb{E}_y [(-1)^{S \cdot y} f_t(x)]$  is non-zero iff  $U$  corresponds to a set of edges in  $M_t$ .





$\mathbb{E}_y [(-1)^{S \cdot y} f_t(x)]$  is non-zero iff  $U$  corresponds to a set of edges in  $M_t$ .



So each Fourier coefficient  $\hat{f}_{t-1}(S)$  can be seen as generating one Fourier coefficient  $\hat{f}_t(S \oplus M_t^{\text{tr}} y)$  for each subset  $y$  of  $M_t$ .



Combinatorics and matrix hypercontractivity gives us that  $\|f_{t-1}(S)\|_1$  will be small for all  $S$  matched by player  $t$ 's edges if  $\#$  of qubits  $\beta \ll n/2^{1/T}$ .



Combinatorics and matrix hypercontractivity gives us that  $\|f_{t-1}(S)\|_1$  will be small for all  $S$  matched by player  $t$ 's edges if # of qubits  $\beta \ll n/2^{1/T}$ .

- DIHP requires  $n/2^{1/T}$  (qu)bits of quantum *or* classical communication.



Combinatorics and matrix hypercontractivity gives us that  $\|f_{t-1}(S)\|_1$  will be small for all  $S$  matched by player  $t$ 's edges if # of qubits  $\beta \ll n/2^{1/T}$ .

- DIHP requires  $n/2^{1/T}$  (qu)bits of quantum *or* classical communication.
- So  $(2 - \varepsilon)$ -approximation of MAX-CUT requires  $n/2^{O(\varepsilon)}$  space.



The quantum generalization of a constraint satisfaction problem is a *local Hamiltonian* problem.



The quantum generalization of a constraint satisfaction problem is a *local Hamiltonian* problem.

$$H = \sum I \otimes L$$

- A sum of “local” terms operating on a small number of qubits each.



The quantum generalization of a constraint satisfaction problem is a *local Hamiltonian* problem.

$$H = \sum I \otimes L$$

- A sum of “local” terms operating on a small number of qubits each.
- Objective is to find minimum/maximum  $x^* H x$  among  $n$ -qubit states  $x$ .



The quantum generalization of a constraint satisfaction problem is a *local Hamiltonian* problem.

$$H = \sum I \otimes L$$

- A sum of “local” terms operating on a small number of qubits each.
- Objective is to find minimum/maximum  $x^* H x$  among  $n$ -qubit states  $x$ .
- Many important problems in physics take this form.



One of these is the *anti-ferromagnetic Heisenberg model*.



One of these is the *anti-ferromagnetic Heisenberg model*.

- Searching for the minimum energy of this creates a Hamiltonian maximization problem that returns half the cut value of any *classical* string viewed as a partition.



One of these is the *anti-ferromagnetic Heisenberg model*.

- Searching for the minimum energy of this creates a Hamiltonian maximization problem that returns half the cut value of any *classical* string viewed as a partition.
- Also referred to as QUANTUM MAX-CUT.

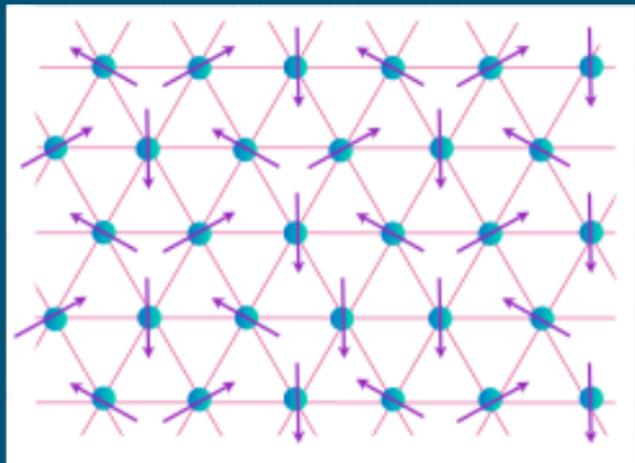


Figure: Anti-ferromagnetic Heisenberg model: roughly neighboring quantum particles aim to align in opposite directions.

[Image: Sachdev, arXiv:1203.4565]

## Reducing DIHP to QUANTUM MAX-CUT



The QUANTUM MAX-CUT value of a graph is always at least  $1/2$  its MAX-CUT value, so a **YES** instance of DIHP has value  $m/4$ .

## Reducing DIHP to QUANTUM MAX-CUT



The QUANTUM MAX-CUT value of a graph is always at least 1/2 its MAX-CUT value, so a **YES** instance of DIHP has value  $m/4$ . For the **NO** case we will need the following SDP:

$$\max_{f: V \rightarrow S^{n-1}} \sum_{uv \in E} -\langle f(u), f(v) \rangle$$

## Reducing DIHP to QUANTUM MAX-CUT



The QUANTUM MAX-CUT value of a graph is always at least  $1/2$  its MAX-CUT value, so a **YES** instance of DIHP has value  $m/4$ . For the **NO** case we will need the following SDP:

$$\max_{f: V \rightarrow S^{n-1}} \sum_{uv \in E} -\langle f(u), f(v) \rangle$$

This is a shifted version of the Goemans-Williamson SDP for MAX-CUT. We use two properties:

## Reducing DIHP to QUANTUM MAX-CUT



The QUANTUM MAX-CUT value of a graph is always at least  $1/2$  its MAX-CUT value, so a **YES** instance of DIHP has value  $m/4$ . For the **NO** case we will need the following SDP:

$$\max_{f: V \rightarrow S^{n-1}} \sum_{uv \in E} -\langle f(u), f(v) \rangle$$

This is a shifted version of the Goemans-Williamson SDP for MAX-CUT. We use two properties:

- If it is  $\varepsilon$ , QUANTUM MAX-CUT value is  $m/2 + O(\varepsilon)$ .

## Reducing DIHP to QUANTUM MAX-CUT



The QUANTUM MAX-CUT value of a graph is always at least  $1/2$  its MAX-CUT value, so a **YES** instance of DIHP has value  $m/4$ . For the **NO** case we will need the following SDP:

$$\max_{f: V \rightarrow S^{n-1}} \sum_{uv \in E} -\langle f(u), f(v) \rangle$$

This is a shifted version of the Goemans-Williamson SDP for MAX-CUT. We use two properties:

- If it is  $\varepsilon$ , QUANTUM MAX-CUT value is  $m/2 + O(\varepsilon)$ .
- If MAX-CUT value is  $m/2 + O(\varepsilon)$ , SDP is  $O(\varepsilon)$ .

## Reducing DIHP to QUANTUM MAX-CUT



The QUANTUM MAX-CUT value of a graph is always at least  $1/2$  its MAX-CUT value, so a **YES** instance of DIHP has value  $m/4$ . For the **NO** case we will need the following SDP:

$$\max_{f: V \rightarrow S^{n-1}} \sum_{uv \in E} -\langle f(u), f(v) \rangle$$

This is a shifted version of the Goemans-Williamson SDP for MAX-CUT. We use two properties:

- If it is  $\varepsilon$ , QUANTUM MAX-CUT value is  $m/2 + O(\varepsilon)$ .
- If MAX-CUT value is  $m/2 + O(\varepsilon)$ , SDP is  $O(\varepsilon)$ .

So **NO** instances have QUANTUM MAX-CUT value at most  $m(1/2 + \Theta(1/\sqrt{T}))$  too!

## Conclusion



|                      | MAX-CUT           |                   | QUANTUM MAX-CUT   |                   |
|----------------------|-------------------|-------------------|-------------------|-------------------|
| Approximation Factor | $2 + \varepsilon$ | $2 - \varepsilon$ | $2 + \varepsilon$ | $2 - \varepsilon$ |
| Classical Algorithm  | $O(\log n)$       | $\Omega(n)$       | $O(\log n)$       | $\Omega(n)$       |
| Quantum Algorithm    | $O(\log n)$       | $\Omega(n)$       | $O(\log n)$       | $\Omega(n)$       |



|                      | MAX-CUT           |                   | QUANTUM MAX-CUT   |                   |
|----------------------|-------------------|-------------------|-------------------|-------------------|
| Approximation Factor | $2 + \varepsilon$ | $2 - \varepsilon$ | $2 + \varepsilon$ | $2 - \varepsilon$ |
| Classical Algorithm  | $O(\log n)$       | $\Omega(n)$       | $O(\log n)$       | $\Omega(n)$       |
| Quantum Algorithm    | $O(\log n)$       | $\Omega(n)$       | $O(\log n)$       | $\Omega(n)$       |

- [Chou, Golovnev, Sudan, Velingker, Velusamy '22] gives linear lower bounds for a larger class of CSPs. Do these results translate?



|                      | MAX-CUT           |                   | QUANTUM MAX-CUT   |                   |
|----------------------|-------------------|-------------------|-------------------|-------------------|
| Approximation Factor | $2 + \varepsilon$ | $2 - \varepsilon$ | $2 + \varepsilon$ | $2 - \varepsilon$ |
| Classical Algorithm  | $O(\log n)$       | $\Omega(n)$       | $O(\log n)$       | $\Omega(n)$       |
| Quantum Algorithm    | $O(\log n)$       | $\Omega(n)$       | $O(\log n)$       | $\Omega(n)$       |

- [Chou, Golovnev, Sudan, Velingker, Velusamy '22] gives linear lower bounds for a larger class of CSPs. Do these results translate?
- Weighted QUANTUM MAX-CUT.



|                      | MAX-CUT           |                   | QUANTUM MAX-CUT   |                   |
|----------------------|-------------------|-------------------|-------------------|-------------------|
| Approximation Factor | $2 + \varepsilon$ | $2 - \varepsilon$ | $2 + \varepsilon$ | $2 - \varepsilon$ |
| Classical Algorithm  | $O(\log n)$       | $\Omega(n)$       | $O(\log n)$       | $\Omega(n)$       |
| Quantum Algorithm    | $O(\log n)$       | $\Omega(n)$       | $O(\log n)$       | $\Omega(n)$       |

- [Chou, Golovnev, Sudan, Velingker, Velusamy '22] gives linear lower bounds for a larger class of CSPs. Do these results translate?
- Weighted QUANTUM MAX-CUT.
- Can we sparsify (some) 2-local Hamiltonians?



|                      | MAX-CUT           |                   | QUANTUM MAX-CUT   |                   |
|----------------------|-------------------|-------------------|-------------------|-------------------|
| Approximation Factor | $2 + \varepsilon$ | $2 - \varepsilon$ | $2 + \varepsilon$ | $2 - \varepsilon$ |
| Classical Algorithm  | $O(\log n)$       | $\Omega(n)$       | $O(\log n)$       | $\Omega(n)$       |
| Quantum Algorithm    | $O(\log n)$       | $\Omega(n)$       | $O(\log n)$       | $\Omega(n)$       |

- [Chou, Golovnev, Sudan, Velingker, Velusamy '22] gives linear lower bounds for a larger class of CSPs. Do these results translate?
- Weighted QUANTUM MAX-CUT.
- Can we sparsify (some) 2-local Hamiltonians?
- If we can, can we solve them in  $O(n)$  space?