This paper describes objective technical results and analysis. Any subijective views or opinions that mightlbelexpressed}in|
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

SAND2022-15416C

Sandia
DR, National
S e T e R Lahoratories

- -
. ] Ll LT r——
1 = m—y -

b —

Model-based quantification of
uncertainties in metal additive
manufacturing

Daniel Moser (Presenter)
Nicole Aragon, Helen Cleaves, Michael Heiden, Kyle
Johnson, Mario Martinez, Aashique Rezwan, Theron
Rodgers, David Saiz, Michael Stender

Sandia National Laboratories

@©ENERGY NAISH
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the

U.S. Department of Energy’s National

Nuclear Security Administration under
contract DE-NA0003525.

SAND2022-XXX C

International Conference on Additive Manufacturing

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering [SolutionsfofiSandia,|LLC, alwhollylowned!
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfundercontract DE-NA0003525.



|
> | Laser Powder Bed Fusion Qualification Challenges m

« Laser Powder Bed Fusion (LPBF) is a leading
additive technology for producing functional |
metal parts for critical applications

« Part qualification remains an expensive, time- | powdds
consuming, often ill-defined process ) Rolleg | |

* Process physics of laser-induced melting and
re-solidification produces difficult to predict,
often unrepeatable outcomes

* Anisotropic microstructures
« Thermally-induced residual stresses and

distortions Optical image of LPBF machine in operétin I
* Mod-Sim and UQ possible path forward to
reduce cost of part qualification I

* Model-based evidence to support process
qualification I



Input uncertainty

; 1 Uncertainty Quantification Approach  characterization

« Uncertainty quantification techniques
allow uncertainties in model inputs to
be propagated to model predictions

+ Allows prediction of probability
distributions for quantities of interest

« @Goal is to take what we know about Calibration and
the uncertainties in machine uncertainty
operation and propagate them reduction data ==
through physics models to predict
distributions of as-built:

« Dimensional accuracy
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+ | Input Uncertainty Estimates

« High fidelity melt pool model sensitivity
analysis used to screen for process
sensitivities to uncertain parameters

Ambient chamber temperature

Material sulfur content (impacts surface
tension)

Index of refraction
Laser power
Gaussian laser standard deviation

* Probability distributions estimated using
literature review, beam characterization, and
integrating sphere data

Laser Standard Deviation
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Measured evolution of laser spot size over time

Example of high fidelity model used to predict
spot weld behavior
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s | Low Level Validation: Bead on Plate Dimensions m

0.00014 ~

« Uncertain parameters are propagated
through high fidelity thermal/fluid models 0.00012 |
using Gaussian Process Surrogates and Latin
Hypercube Sampling

0.00010 ~

* Results compared to 100 experimental bead
-on-plate dimensional measurements from § 0.00006 -
cross section metallography

0.00004 ~

* Predicted distribution bounds the observed
results for 91/100 cases 0.00002 1 |
. . imulation
* Investigating cause of what appear to be 0.00000 | ® e Expariment
laser misfires > ! 6 8
Depth (m) le—5 |
At this point, model has seen no Distributions of predicted and measured melt
calibration data, just estimates of uncertain pool widths.and depths

inputs



s | Low Level Validation: Bead on Plate Microstructure

Thermal results used in undercooling-based
microstructure prediction routine to build
and sample Gaussian Process Surrogate for
average grain size

Results compared to 5 EBSD cross section
images from bead-on-plate builds

Predicted distribution has larger average
grain sizes than experimentally observed

Only thermal model parameters considered
here. Study needs to be expanded to include
additional uncertainties in microstructure
model
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; 1 Part Scale Predictions

- Faster, reduced fidelity models needed to
make predictions of cm-scale parts

« Conduction only model neglects fluid flow and
simplifies laser interaction to ellipsoidal
gaussian volumetric source

»
Q.

Metallography image of built cube showing

* Heat source parameters require overlapping melt pools
calibration 160
140
- Bayesian calibration of conduction-only model I L "
ayesian calibration of conduction-only mode w Bl Nl:7 Blo1 gdem ddzg

100

performed to metallography melt pool
measurements of 2cm cubes

80

60
« Calculates probability distributions of 4 |
calibrated parameters based on knowledge 2
gained from observed data " cbel  cubez  cubed  cubed  Cubes |

NP220330 NP220405 [ NP220412 NP220422

Average melt pool depths measured from
metallography images I

Average MP Depth (um)



Temperature vs Time

|
¢ | Part Scale Predictions m
|

3000

- Even simplified conduction model can be 2500

intractable at scale due to time stepping 2000

requirements 1500

1000

* Green's function analytical solutions enable rapid
computation of time-temperature traces for a

0
pa rt 1826.5 1826.51 1826.52 1826.53 1826.54

: : , _ . Example time-temperature trace for pointin
« Requires linearity assumption. Additional source  part build simulation

Full layer thermal history computed with
analytical model I

of uncertainty due to unmodeled temperature
dependence of material properties

« Laser source parameters (depth, width,
travel)

* Thermal conductivity
« Specific heat

 Distributions from 100 Latin Hypercube samples




s | Part Scale Measurements

« 2cm‘house’ geometry builds performed. EBSD
and blue light coordinate measurements
collected

 Various features added to create areas of
microstructural/mechanical interest

« Cut for EBSD in “arch” section of geometry

» Deflections compared along outer wall in the
middle

Cut location for EBSD
measurements

Deflection comparison
location



0 | Part Scale Microstructure

+ Using same undercooling based 030
microstructure model as bead-on-plate == simulation
predictions o Bxperiment

0.25

« Simulations performed on small “window”
of the part to allow for faster evaluations 0.20 -

* Predicted grain sizes do bound the
experimentally observed grain sizes.
Predicted distribution is much broader and
predicts some population of very large 0.10 -
grains

0.15

Probability

0.05

- Still only considering thermal model
uncertainties. Results may be less sensitive
to microstructure model parameters in e T T T T
|arger bU||d Average Equivalent Circular Grain 5ize {(um) I

* Next step is propagating uncertainties in
microstructural features through to bulk
material properties



1 | Part Scale Deflection

— Simulation

employed, making use of 015 | = Experiment 1
) = Experiment 2

Experiment 3

* Enhanced inherent strain method 0-20 |

time/temperature traces calculated
from analytical thermal model 0101

0.05 -

« Imposed plastic strains are scaled by the
max thermal gradient seen at each point

0.00

Deformation (mm)

« Mechanical model less sensitive to
thermal model uncertainties than
microstructure

—0.05 ~
—0.10 ~

—0.15 +

« Model form uncertainty estimation for
mechanical model is needed ~0.20 L,

l|5 EID I
Height (mm)



« Uncertainty quantification techniques have shown promise in bounding laser powder
bed fusion build outcomes

« Future work is planned to fully propagate uncertainties from process physics to part
distortion, residual stress, and material properties

« Model form uncertainty quantification is an outstanding challenge in reduced fidelity
conduction models and rapid solid mechanics models

 Final goal is to predict outcome distributions for part performance that can be used to
assist with process qualification

|
> | Conclusions and future work m
|



