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Laser Powder Bed Fusion Qualification Challenges
• Laser Powder Bed Fusion (LPBF) is a leading 

additive technology for producing functional 
metal parts for critical applications

• Part qualification remains an expensive, time-
consuming, often ill-defined process

• Process physics of laser-induced melting and 
re-solidification produces difficult to predict, 
often unrepeatable outcomes
• Anisotropic microstructures
• Thermally-induced residual stresses and 

distortions

• Mod-Sim and UQ possible path forward to 
reduce cost of part qualification

• Model-based evidence to support process 
qualification
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Uncertainty Quantification Approach
• Uncertainty quantification techniques 

allow uncertainties in model inputs to  
be propagated to model predictions 

• Allows prediction of probability 
distributions for quantities of interest

• Goal is to take what we know about 
the uncertainties in machine 
operation and propagate them 
through physics models to predict 
distributions of as-built:
• Dimensional accuracy
• Residual stress
• Microstructural features
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Input Uncertainty Estimates
• High fidelity melt pool model sensitivity 

analysis used to screen for process 
sensitivities to uncertain parameters
• Ambient chamber temperature
• Material sulfur content (impacts surface 

tension)
• Index of refraction 
• Laser power
• Gaussian laser standard deviation

• Probability distributions estimated using 
literature review, beam characterization, and 
integrating sphere data
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Low Level Validation: Bead on Plate Dimensions
• Uncertain parameters are propagated 

through high fidelity thermal/fluid models 
using Gaussian Process Surrogates and Latin 
Hypercube Sampling

• Results compared to 100 experimental bead
-on-plate dimensional measurements from 
cross section metallography

• Predicted distribution bounds the observed 
results for 91/100 cases
• Investigating cause of what appear to be 

laser misfires

• At this point, model has seen no 
calibration data, just estimates of uncertain 
inputs
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Low Level Validation: Bead on Plate Microstructure
• Thermal results used in undercooling-based 

microstructure prediction routine to build 
and sample Gaussian Process Surrogate for 
average grain size

• Results compared to 5 EBSD cross section 
images from bead-on-plate builds

• Predicted distribution has larger average 
grain sizes than experimentally observed

• Only thermal model parameters considered 
here. Study needs to be expanded to include 
additional uncertainties in microstructure 
model
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Part Scale Predictions
• Faster, reduced fidelity models needed to 

make predictions of cm-scale parts

• Conduction only model neglects fluid flow and 
simplifies laser interaction to ellipsoidal 
gaussian volumetric source
• Heat source parameters require 

calibration

• Bayesian calibration of conduction-only model 
performed to metallography melt pool 
measurements of 2cm cubes

• Calculates probability distributions of 
calibrated parameters based on knowledge 
gained from observed data
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Part Scale Predictions
• Even simplified conduction model can be 

intractable at scale due to time stepping 
requirements

• Green’s function analytical solutions enable rapid 
computation of time-temperature traces for a 
part

• Requires linearity assumption. Additional source 
of uncertainty due to unmodeled temperature 
dependence of material properties
• Laser source parameters (depth, width, 

travel)
• Thermal conductivity
• Specific heat

• Distributions from 100 Latin Hypercube samples
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Part Scale Measurements
• 2cm ‘house’ geometry builds performed. EBSD 

and blue light coordinate measurements 
collected

• Various features added to create areas of 
microstructural/mechanical interest

• Cut for EBSD in “arch” section of geometry

• Deflections compared along outer wall in the 
middle 
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Part Scale Microstructure

• Using same undercooling based 
microstructure model as bead-on-plate 
predictions

• Simulations performed on small “window” 
of the part to allow for faster evaluations

• Predicted grain sizes do bound the 
experimentally observed grain sizes. 
Predicted distribution is much broader and 
predicts some population of very large 
grains

• Still only considering thermal model 
uncertainties. Results may be less sensitive 
to microstructure model parameters in 
larger build

• Next step is propagating uncertainties in 
microstructural features through to bulk 
material properties
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Part Scale Deflection
• Enhanced inherent strain method 

employed, making use of 
time/temperature traces calculated 
from analytical thermal model

• Imposed plastic strains are scaled by the 
max thermal gradient seen at each point

• Mechanical model less sensitive to 
thermal model uncertainties than 
microstructure

• Model form uncertainty estimation for 
mechanical model is needed
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Conclusions and future work
• Uncertainty quantification techniques have shown promise in bounding laser powder 

bed fusion build outcomes

• Future work is planned to fully propagate uncertainties from process physics to part 
distortion, residual stress, and material properties 

• Model form uncertainty quantification is an outstanding challenge in reduced fidelity 
conduction models and rapid solid mechanics models

• Final goal is to predict outcome distributions for part performance that can be used to 
assist with process qualification

12


