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Project Overview:

Guiding principle: By understanding the mediating role of grain boundaries and their
networks, we can harness them to control monotonic and cyclic damage processes.
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Nanocrystalline metals provides a unique
‘microstructural grain boundary laboratory’
through which we can suppress better-understood
mechanisms (e.g. dislocation plasticity) and
amplify the unusual contributions of grain
boundaries.

Current core hypothesis: the presence and
evolution of defects within grain boundaries alter

the GB behavior in response to thermal, irradiation,

and/or mechanical driving forces
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“Way back” in 2009...

Grain boundary properties depend strongly on character
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Olmsted, Foiles, Holm, Acta Mater, 2009

Grain boundaries can occupy a multiplicity of states
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Theme of this presentation: Defected defects...
Grain boundaries are 2D defects that move through the evolution of OD and 1D defects within them




Defected Defects
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secondary grain

An “ordinary” {310} and {210} boundary dislocations

2=5 grain boundary facets

Facets are a common GB feature found in many vicinal low-CSL boundaries.

They are also found within many random HAGBs as the boundary locally tries to adopt a low energy structure

Medlin, Hattar, Zimmerman, Abdeljawad, Foiles, Acta Materialia, 2017



Defected Defects: Irradiation-induced migration of a >.3 grain boundary
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C.M. Barr, et al., Science Advances, 2022



Facet migration of a >.3 grain boundary

Irradiated with non-depositing 2.8 MeV Au#*; Total dose during exposure: 1 dpa
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What atomic process(es) drive this migration of the facet junctions?

C.M. Barr, et al., Science Advances, 2022
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C.M. Barr, et al., Science Advances, 2022



Defected Defects: Simulation of fatigue-induced gb migration
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C.M. Barr et al., in review
(a collaboration with M. Demkowicz)



High-cycle fatigue-induced vicinal boundary migration

(a) before (644K cycles) (b) monotonic load (c) +13 cycles

Polycrystalline Pt

Loading direction

Loading direction

Crack impiiiSiEsEass

(d) + 13,400 cycles (e) + 20,100 cycles (f) + 26,800 cycles

Cycles (N) = 124,000

Crack cloSigls

(g) + 39,900 cycles (h) monotonic unload (i) after (684K cycles)

(001) (101)

200 times every second,
we apply 17 uN, a force equivalent
to merely 10,000 C-C bonds.

Similar observations of crack healing have been made multiple times in
Pt, and also in Cu
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Defected Defects:
Added complexity with alloying




How does chemistry (solute content) affect these processes?
12

Cover art:
Barr, et al., Nanoscale, 2021
(simulations from Fadi Abdeljawad)
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Pt-Au: the most noble binary nanocrystalline alloy E
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Phase Field with Heterogeneous Segregation: J. Monti et al., Acta Mater, 2022
GB character: C.M. Barr, et al., Nanoscale, 2021

GB Spinodal decomposition: X. Zhou et al., Acta Mater., 2021 (collab with G. Thompson, D. Raabe)
GB phase transformations: C.J. O’Brien et al., J. Mater. Sci., 2018

Tensile behavior: N.M. Heckman et al., Nanoscale, 2018
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In 12 additional binary alloys: Hu, Berbenni, Medlin, Dingreville, in

In Pt-Au alloy: Hu, Medlin, Dingreville, J. Phys. Chem. Lett., 2021
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Ok, how do these chemically-stabilized GB defects
alter macroscale polycrystalline behavior?




Net effects: Au in Pt stabilizes grain structure and enhances fatigue
resistance

Pt-10Au, (initial grain size = 54 nm)
Fatigued ~1M cycles to failure
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N.M. Heckman, et al., Acta Materialia, 2022



But the presence of Au at the GB does not resist irradiation-induced
growth
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Simultaneous Irradiation + High-cycle Fatigue

18 : .
No irradiation With irradiation

1600 Avg. Lifespan Avg. Lifespan
1500 ~6000 cycles ~260,000 cycles
E o \ I
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5 0 .
£ ® No irradiation
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What causes radiation-enhanced fatigue? Number of Cycles to Failure

COLLECTIVE DEFECTS:

Compressive residual stress?
Radiation-induced hardening?

Complex superimposed defect-interactions?

Briggs et al., Nucl Inst. Meth. Phys. Res., 2021



19 1 Summary

15
B 1000 nm

While there are many distinct unit processes for grain
boundary migration in response to thermal, radiation, and
mechanical stimuli, a unifying theme is the critical role of
defects within the grain boundary.
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I Questions?

CINT is a user facility providing cutting-
edge nanoscience and nanotechnology
capabilities to the research community.

Access to our facilities and scientific
expertise is FREE for non-proprietary
research.

Research areas:

AT THE NANDSCALE

Quantum Materials Systems
Nanophotonics and Optical Nanomaterials
In-Situ Characterization and
Nanomechanics

Soft, Biological, and Composite
Nanomaterials

To learn more and
apply to use the facilities, visit:
https://cint.lanl.gov

U.S. DEPARTMENT OF OffICe Of

* EN ERGY Science

HIE S[IE“[E « Comprehensive nanoscience capabilities

Free access with a successful 2-page user proposal
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22 | Irradiation + Fatigue

No irradiation With irradiation
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What causes radiation-enhanced fatigue? Number of Cycles to Failure

Compressive residual stress?
Radiation-induced strengthening?

Complex superimposed defect-interactions?
What else?

Briggs et al., Nucl Inst. Meth. Phys. Res., 2021



; | Did the Pt-Au actually resist fatigue-induced grain growth?
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N.M. Heckman, et al., Acta Materialia, 2022



,4 | Gradient Pt-Au by composition not severe plastic deformation

Phase field prediction of
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Monti et al., Acta Mater, 2022



.5 | Experimental confirmation of gradient Pt-Au

(a) As-deposited

0.2
2000
1800 ° °
—
= e o Annealed
=3 1600 P s
v} &
g [ JS +.“.-‘
= 14,00 ' e
L ] -0
1200
= . . ®
0.0 "é 1000 . ..
- As-Deposited ¢ e
E ™ 0
0.2 = 8oo o
L. L ] -
L 2 B
Eoo ™ ™
| JS—
=2
< 400 0
S [ JR—
M ™ ™
£ 200
o
+—
1]
o
o 50 100 150 200 250
0.0 Grain width [nm]

Barrios et al., in review



‘ A macroscopic view of irradiation-induced evolution
26

Au foil during bombardment with 10 MeV Si3+

In-Situ TEM hse-field modl of thermal spikes
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Time [x 7]

Bufford, Abdeljawad, Foiles, and Hattar, Appl. Phys. Lett., 2015
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E.Y. Chen et al., submitted
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E.Y. Chen et al., submitted



Defected defects: facet junctions as a network of dislocations
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AGGR with

Mechanical Fatigue
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E.Y. Chen et al., submitted
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The complexity of grain growth...

E.Y. Chen et al., submitted




