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Why Flexibility Analysis?

Modern energy and process systems must satisfy performance criteria under 
a wide range of operating conditions, such as variable feed compositions 
and product demand.
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Flexibility Analysis provides a rigorous framework to quantify the flexible 
operation of a system given an uncertain parameter set. 



The Flexibility Test4
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✓ : Uncertain parameters

z : Controls

u : Maximum constraint violation

gj : Performance constraints

h : Physics constraints (e.g., mass balance)

𝑢 > 0: Flexibility Test fails
𝑢 ≤ 0: Flexibility Test 
passes
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Halemane & Grossmann (1983)



The Flexibility Index5
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Find the largest uncertainty set around a nominal point 
such that the flexibility test passes.
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A Module for Flexibility Analysis with IDAES6
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A Module for Flexibility Analysis with IDAES7

Method
*IDAES 

Implemen
tation?

Advantages Disadvantages

Vertex Enumeration ✓
• Requires NLPs
• Supports external 

functions

• Heuristic for nonconvex problems
• 2# "#$%&'()# *(&(+%'%&,

Sampling ✓
• Requires NLPs
• Supports external 

functions
• 𝑁# "#$%&'()# *(&(+%'%&,

Active Constraint ✓ • # of uncertain parameters
• Requires MINLP
• Conservative for nonconvex 

problems
Linear Decision 
Rules ✓ • Much simpler MINLP • Conservative

NN Decision Rules ✓ • Usually accurate, even for 
nonconvex problems

• Requires MINLP
• Requires training a neural network

Global Optimization Future 
Work

• Correct solution 
guaranteed • Iterative solution of MINLPs



Machine Learning Approaches for Improved Solution of 
Nonconvex Problems

Challenge: Nonconvex bilevel problems are particularly challenging to solve, and 
nearly all IDAES problems are nonconvex.

Idea: Convert the bilevel problem (flexibility test) to a single-level problem by training a 
machine-learning (ML) based decision rule to approximate the optimal control action of 
the inner problem.
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Machine Learning Approaches for Improved Solution of 
Nonconvex Problems
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Machine Learning Approaches for Improved Solution of 
Nonconvex Problems

Key Concepts:
• The outputs of the ML surrogate must define all degrees of freedom of the inner 

problem.

• If the inner problem is always feasible, then this approach provides an upper bound 
on the maximum constraint violation. 
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Machine Learning Approaches for Improved Solution of 
Nonconvex Problems
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Machine Learning Approaches for Improved Solution of 
Nonconvex Problems
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Polynomial 1 – Active 
Constraint: Local minima in 
the constraint violation 
causes the active constraint 
method to report the 
nominal point as infeasible.



Machine Learning Approaches for Improved Solution of 
Nonconvex Problems
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Machine Learning Approaches for Improved Solution of 
Nonconvex Problems
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Polynomial 3 - ReLU DR: 
Discontinuity in the optimal 
control profile causes ReLU
NN to underpredict the 
flexibility index.



Linear Model Decision Trees15

Linear Model Decision Trees Formulations



Linear Model Decision Trees16

Method δ

True 
Solution 1

Vertex 1

ReLU NN 0.152

Linear Tree 0.890

Active Set 0.300



Remarks and Future Work

• IDAES is developing rigorous, general-purpose capabilities for quantified analysis of 
process system flexibility.

• The flexibility analysis module will be incorporated into the IDAES platform after 
documentation and unit tests have been developed.

• Machine-learning based decision rules provide a viable solution approach for 
nonconvex problems.

• The optimal control profile may be a discontinuous function of the uncertain 
parameters. Linear decision trees are likely to be an excellent solution.

• Because a decision rule can provide an upper bound on the maximum constraint 
violation, future work will investigate strategies to bound the true solution and iteratively 
refine the ML-based decision rule.
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