This paper describes objective technical results and analysis. Any subijective views or opinions that mightlbelexpressed}in|
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

Sandia
National
Laboratories

Software and Advanced Solution
Methods for Flexibility Analysis

Michael Bynum, Bashar Ammari, Ignacio
Grossmann, Taehun Kim, Carl Laird, Joshua
Pulsipher, John Siirola, and Stephen Zitney

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering SolutionsfofiSandia,|LLC, alwhollylowned:
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfundercontract DE-NA0003525.

SAND2022-15940C

U.S. DEPARTMENT OF

ENERGY /NA'SH
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the

U.S. Department of Energy’s National

Nuclear Security Administration under

contract DE-NA0003525.



I
, | Why Flexibility Analysis? Eﬂ!

Modern energy and process systems must satisfy performance criteria under ‘
a wide range of operating conditions, such as variable feed compositions
and product demand.
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Flexibility Analysis provides a rigorous framework to quantify the flexible
operation of a system given an uncertain parameter set. |
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. | The Flexibility Test Eﬂ!
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s | The Flexibility Index

Find the largest uncertainty set around a nominal point ‘
such that the flexibility test passes.
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s 1 A Module for Flexibility Analysis with IDAES
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A Module for Flexibility Analysis with IDAES

Vertex Enumeration

Sampling

Active Constraint

Linear Decision
Rules

NN Decision Rules

Global Optimization

*IDAES

Implemen
tation?

v

Future
Work

Advantages

Requires NLPs
Supports external
functions

Requires NLPs
Supports external
functions

# of uncertain parameters

Much simpler MINLP

Usually accurate, even for
nonconvex problems

Correct solution
guaranteed

Disadvantages

Heuristic for nonconvex problems
2# uncertain parameters

N # uncertain parameters

Requires MINLP
Conservative for nonconvex
problems

Conservative

Requires MINLP
Requires training a neural network

Iterative solution of MINLPs
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Machine Learning Approaches for Improved Solution of
Nonconvex Problems

Challenge: Nonconvex bilevel problems are particularly challenging to solve, and
nearly all IDAES problems are nonconvex.

Idea: Convert the bilevel problem (flexibility test) to a single-level problem by training a
machine-learning (ML) based decision rule to approximate the optimal control action of
the inner problem.

o
!
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o | Machine Learning Approaches for Improved Solution of m
Nonconvex Problems
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Nonconvex Problems

Key Concepts:

The outputs of the ML surrogate must define all degrees of freedom of the inner
problem.

If the inner problem is always feasible, then this approach provides an upper bound
on the maximum constraint violation.
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11 | Machine Learning Approaches for Improved Solution of
Nonconvex Problems

Method ™ Active Constraint M Vertex Enumeration M Linear DR M RelLU DR = =True Solution
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Keras: Chollet, et al. (2015) OMLT: Ceccon, et al. (2022) SCIP 7.0.2: Vigerske & Gleixner (2018) Pyomo 6.4: Bynum, et al. (2021) Gurobi 9.5.2



> | Machine Learning Approaches for Improved Solution of

Nonconvex Problems
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Constraint: Local minima in
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causes the active constraint
method to report the
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Flexibility Index

Machine Learning Approaches for Improved Solution of

Nonconvex Problems
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2 | Machine Learning Approaches for Improved Solution of

Z (control)

Nonconvex Problems
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Polynomial 3 - ReLU DR:
Discontinuity in the optimal
control profile causes RelLU
NN to underpredict the
flexibility index.
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15 ‘ Linear Model Decision Trees

Linear Model Decision Trees
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16 | Linear Model Decision Trees
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7 | Remarks and Future Work

- |IDAES is developing rigorous, general-purpose capabilities for quantified analysis of ‘
process system flexibility.

+ The flexibility analysis module will be incorporated into the IDAES platform after
documentation and unit tests have been developed.

- Machine-learning based decision rules provide a viable solution approach for
nonconvex problems.

- The optimal control profile may be a discontinuous function of the uncertain ‘
parameters. Linear decision trees are likely to be an excellent solution.

- Because a decision rule can provide an upper bound on the maximum constraint ]
violation, future work will investigate strategies to bound the true solution and iteratively [

refine the ML-based decision rule. |
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