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1.

2.

Background

Room closure compacts the waste
1.

2.

Plane strain deformation

Progresses until waste plus gas
can resist pt"® = 14.7 MPa

Waste compaction behavior is

important when gas pressure is low
1.

2.

During the first ~300 years

For low gas generation factors
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5 ‘ Legacy Compaction Tests

Uniaxial Strain (Oedometer) Tests Uniaxial Stress Tests
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1. Compacted drums filled with mixtures of non-

1. Compacted individual, non-degraded,
degraded waste components
waste components
. . Axial strain and stress measured
Axial strain and stress measured |

Lateral strain measured/inferred only in the first 2/3™
of two tests (malfunction halted lateral strain
measurements after ~60% of the tests) I

Lateral stress not measured



6 ‘ Legacy Compaction Model

1. Container and waste contents homogenized into a
continuous effective material

2. Utilized the Soil and Foam (SAF) constitutive model

1.
2.

Drucker-Prager yield surface and von Mises flow potential
Hydrostatic pressure cap that hardens with volume strain

3. Hydrostatic pressure vs. volume strain calibration

1.

2.
3.
4

Only used the uniaxial strain tests
Mixture rule used to combine the component responses
Assumed drums would be 100 % full

Assumed the lateral stress was zero to compute hydrostatic
pressure

Extended the response from 5 MPa to 12 MPa using an
assumed stiffness

Last point of volume strain coincides with zero porosity

Uniaxial Strain

O-ZZ

Pressure versus Volumetric Strain
Used in Legacy Waste Compaction Model (Butcher, 1997
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7 I Motivation

Uniaxial Stress

O-ZZ

T

1. We now know the typical composition of the waste
1. Drums are typically 66 % full.

2. Legacy model was focused on early instead of late

compaction behavior T

1. Did not measure the stiffness for p > 5 MPa

Legacy Waste Compaction Model (from Butcher, 1997)
Uniaxial Stress—Single Element Test
T T T T T T

2. Neglected lateral expansion late in uniaxial stress

tests
0.35
3. Legacy model does not produce zero lateral o3
expansion under uniaxial stress as intended. OET

Lateral Strain
=
ra
-

1. Leads to non-physical tensile stresses along the
length of the room.

4. Waste compaction could be rate dependent ous |
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Compressive Strains are positive I



8 I Motivation

1. We now know the typical composition of the waste

1. Drums are typically 66 % full. Txx gy=0

2. Legacy model was focused on early instead of late e
compaction behavior
1. Did not measure the stiffness for p > 5 MPa

Legacy Waste Compaction Model (from Butcher, 1997)

2. Neglected lateral expansion late in uniaxial stress 5 Frane Strain-Single Element Test
teStS :gpzziﬁigziiféane)
10 F
3. Legacy model does not produce zero lateral
expansion under uniaxial stress as intended. g |
1. Leads to non-physical tensile stresses along the E’ ol |
w
length of the room.
I
4. Waste compaction could be rate dependent
s 06 04 02 0
Porosity I

Compressive Stresses are positive I
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10 | Surrogate, Non-Degraded, Waste and Waste Containers

55 Gallon Drum
(with surrogate waste)

Legacy waste composition compared to current waste composition

V4-Scale Drum
60 . .
BcCh (with surrogate waste)
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Waste Constituents

Waste containers only 66 % filled.

Broome, S.T., Ingraham, M.D., Flint, G.M., Hileman, M.B., Barrow, P.C., and Herrick, C.G., “Laboratory Testing
of Surrogate Non-degraded Waste Isolation Pilot Plant Materials”, 2016, American Rock Mechanics Assoc.,
ARMA 16-120



i+ I Experiment Types

Uniaxial Stress
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1. Full and ' size drums

2. Lateral strain inferred from axial and
volume strain

3.  Strain rates ranged from 107 to 104 1/s

Triaxial (Axisymmetric) Stress
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Only Y4 size drums

Lateral strain inferred from axial and
volume strain

Strain rate = 104 1/s

Hydrostatic Stress

p
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Full and 4 size drums
Measured only volume strain

Strain rate = 104 1/s




12 | Y4 Scale Uniaxial Stress Test Setup

Photograph Schematic
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“4a-Scale Uniaxial Stress Compaction Images
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14 | Triaxial and Hydrostatic Test Setups

Triaxial Test Setup Full Size Hydrostatic Pressure Vessel
load frame
MTS ‘ s
air lines
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15 | Triaxial and Hydrostatic Stress Test, Post-Test Images

Triaxial Stress Hydrostatic Stress
Y4-Size Drums Va-Size Drums
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Calibration of a New Waste Compaction Model




7 I New Waste Compaction Model

1. Container and waste contents again homogenized into a
continuous effective material

2. Utilized the Foam Damage (FD) constitutive model
1. Ellipsoidal yield surface

2. Independent ellipsoidal flow potential
3. Ellipsoid axes evolve with porosity

1. Stiffness can increase as porosity reduces

2. Lateral strain can evolve faster as porosity reduces

4.  Can incorporate strain rate sensitivity

3. Calibration
1.  Elected to focus on triaxial and hydrostatic behaviors

2. Calibrated against "4-scale container behavior, then
adjusted to match full size container behavior



s I Uniaxial Stress Mechanical Responses
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o I Uniaxial Stress Mechanical Responses
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20 ‘ Triaxial Stress Mechanical Responses
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21 ‘ Triaxial Stress Mechanical Responses
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22 ‘ Hydrostatic Stress Mechanical Responses
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23 ‘ Hydrostatic Stress Mechanical Responses
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.+ | Waste Deformation and Stress Paths in a Disposal Room Simulation

Stress Paths
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Waste Deformation and Stress Paths in a Disposal Room Simulation
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Strain Rate Dependence
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28 ‘ Legacy vs. New Model: Hydrostatic Behavior
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s | Legacy vs. New Model: Plane Strain Behavior
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Summary



1. Legacy model
1.  Assumes drums are 100 % full

2. Produces overly compliant response due to dubious assumption of zero lateral stress in uniaxial strain
tests used to calibrate model

3. Predicts non-physical tensile stresses in out-of-plane direction in plane strain simulations

2.  New Waste Compaction Tests
1. Drums 66 % full

2. Observed substantial lateral expansion as waste porosity decreased

3. Calibration of a New Waste Compaction Model

1. Calibration focused on matching triaxial and hydrostatic behavior, which are more relevant for the long-
term porosity of the disposal rooms than uniaxial stress.

2. Lateral expansion calibrated to accelerate as porosity reduces

|
51 I Summary m
|

4. Legacy vs. New Model
1. New model significantly stronger for the same porosity.
2. New model predicts compressive stresses in the out-of-plane direction in plane strain simulations.



