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Austenitic Stainless Steels2

https://www.azom.com/article.aspx?ArticleID=965

• Predominantly austenite phase (FCC)
• Non-magnetic
• ANSI 200 and 300 series
• Good welding properties
• Corrosion resistant (high Cr content)
• High ductility

• 304SS is the most used alloy globally
• Kitchen equipment and appliances
• Storage Tanks
• Water piping
• Auto moldings and trim

https://bergsen.com/316-vs-304-stainless-steel/



304L Stainless Steel 3
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• Most commonly selected austenitic stainless steel

• Concern with laser welding – solidification cracking
‒Tight restriction for impurity elements 
‒Highly controlled (Cr/Ni)eq 
‒Secondary remelting (vacuum arc remelting, VAR)



Borides identified in microstructure; 
raises liquation cracking concern
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Chen, W., et al.  Met Mat Trans: A, Volume 32A, April 2001, 931-939.  

Inconel 718 Heat Affected Zone 
liquation cracks; 43 ppm B

δ-ferrite 
stringers

Co-located 
borides

Cr-rich borides observed along δ-ferrite stringers 
for boron concentrations as low as 10-20 wt ppm!  



Liquation cracking identified in 
heat-treated B-containing 304L 
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Laser welds on 304L with ~20 wt.ppm B
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Heat 
Treatment

As-received microstructure – not 
crack susceptible

Fundamental kinetics of microstructural evolution as a 
function of heat treatment not understood

Develop an overall understanding of the phase transformation 
kinetics in B-containing 304L stainless steel to enable predictions 
of crack susceptible microstructures produced during complex, 

application-specific heat treatments



Identification of borides on 
γ/γ grain boundaries is challenging 
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Other characterization techniques present similar 
challenges (e.g. WDS, TEM, etc.) 



ToF-SIMS enables boron location identification7
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ToF-SIMS Boron Map
Overlaid B Map and SIMS 

Secondary Electron (SE) Image

Evaluated microstructure of a crack-susceptible 
furnace heat treatment condition

Benefits:
• Sensitivity
• Elemental Specificity
• Image Area
• Resolution
• Acquisition time



Problem: Previous weldability trials 
were conducted with furnace heat treatments
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~20 min ~9 min

1.5 hrs 
heating!

Furnace profiles were selected to 
replicate part-specific heat treatments

3 hrs 
cooling!

1100°C 12 min



Solution: Utilize Gleeble for Isothermal Heat Treatments
Rapid heating and cooling rates 
to restrict phase transformations 
to a single temperature
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Temperatures: 1000°C, 1100°C, 1200°C, 1300°C
Hold Times: 1 min, 8 min, 32 min, 64 min
Utilized 304L composition with 16 wt ppm B

1100°C 8 min He Gas 
Quench 

500°C/s 
heating 
rate

100°C/s 
cooling 
rate



Sample Preparation and Analysis Methods Important

Sample Prep Steps
• Sample Mounting/Polishing

 Samples mounted in epoxy for polishing – not too much epoxy (outgassing)
 Polish for EBSD finish– sample finish important (no scratches left)

ToF-SIMS Acquisition Steps (using Ion-TOF ToF-SIMS.5 instrument)
1. Sputter surface with 1kV O2 to remove surface contamination

 Can perform crude profile watching hydrocarbon signals drop to zero

2. Acquire Boron Image
 High spatial resolution imaging mode
 Neg Secondary Ion Mode
 Analyze for BO2

- while sputtering with O2 (depth profile)
 Sacrifice bonding information for B sensitivity
 Must align subsequent frames due to image drift

3. Acquire SE Image
 Same probe except switch to DC mode, secondary electron imaging
 Many scans to remove oxide and reveal ion/electron contrast
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Optimizations enable high sensitivity, large area 
Boron measurements in ToF-SIMS

Bi3
++

Bi1+

Bi3+

Bi3++

Bi5++

Bi7++

~5X 
Sensitivity

Max: 67 counts
Total: 3.3E+4 Counts

Max: 301 counts
Total: 1.7E5 counts

9.8hr acquisition

• Use multivariate analysis to separate complex signatures
• Ultralow detection limits
• Large area scan (500µmx500µm)



Boride dissolution occurs between 1000°C and 1100°C12

As-Received 1000°C 32 min 1100°C 1 min

Little (if any) 
observable 
changes 
between as-
received and 
1000°C 32 min

Some boron 
migration to γ 
grain 
boundaries; 
some remains 
on δ  

δ stringers



Boron diffusion to γ/γ grain boundaries is rapid13

1100°C 1 min 1100°C 32 min

Little (if any) observable 
changes with additional hold 
time at 1100°C

Grain 
coarsening



Borides re-precipitate on δ/γ boundaries 
but not on γ/γ boundaries 
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20 µm

Recall: ability to see borides in SEM

Is this a crack susceptible 
condition? 

1100°C 32 min

Borides outline δ 

Elemental boron or borides below SEM 
resolution limit? 



Developed test method to correlate 
phase transformation kinetics to crack-susceptibility

15

60 weld cross-sections surveyed per Gleeble condition

Step 1: Gleeble heat treatments
Step 2: Laser welds 
directly on Gleeble bars

Step 3: Section welds in transverse, 
scan HAZ for cracks



Furnace profile condition is crack-susceptible16
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Unambiguous crack 
determination in 
as-polished condition



Borides outline δ 

Crack-susceptible microstructure 
is related to heating/cooling kinetics

No cracks observed in 
any welds for 1100°C 1 
min or 32 min!
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Either borides aren’t 
present (elemental boron) 
or are below resolution 
limit of SEM (and are small 
enough to not present a 
cracking risk)

Experiments are in progress to elucidate 
cooling rate effects on crack-susceptibility
• Critical cooling rate must be between 100°C/s 

and 0.5 C/s (furnace profile cooling rate)



Summary
• ToF-SIMS is an enabling technique for imaging Boron, leading to 

the ability to study grain boundary migration kinetics.
• Special optimizations enable high resolution, large area analyses in a 

reasonable amount of time.

• Boride solvus temperature is between 1000°C and 1100°C
• Subsequent experiments narrowed solvus temperature to 1025-

1050° C

• Boron migration to γ grain boundaries is rapid (1 min at 1100°C is 
sufficient)

• Heat treatments with rapid heating/cooling rates are not crack-
susceptible despite evidence of boron diffusion to grain 
boundaries

• Cooling rate is significant for generating crack-susceptible 
microstructures

• Cooling rate experiments in progress: 10, 1, 0.5, 0.1 °C/s to determine 
critical cooling rate

• These results begin to form the kinetic framework which will 
enable predictions of the crack susceptibility of B-containing 304L 
stainless when subjected to complex, part-specific heat treatments
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