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INTRODUCTION

Global sensitivity analysis (GSA) seeks to assess the rela-
tive contributions of various uncertainty sources to the uncer-
tainty in one or more computation outputs. Such rank-ordering
of contributions enables informed decisions such as downs-
election of which uncertainty sources to further study and
identification of where to invest additional effort in reduc-
ing the overall uncertainty. Perhaps the most common tool
for GSA are Sobol’ Indices (SI) [1]. Common approaches
to computing SI include through the Saltelli sampling meth-
ods [2] and direct computation following the construction of a
polynomial chaos surrogate model [3].

We seek to compute SI using a stochastic solver, here a
Monte Carlo radiation transport (MC RT) solver, that describe
the relative variance contributions from two different aleatoric
uncertainty sources, which are sources for which the uncer-
tainty is due to real random effects as opposed to epistemic
uncertainty where the uncertainty is due to lack of knowledge.
We examine a parametric aleatoric uncertainty source (e.g.,
an uncertain cross section value) and a non-parametric uncer-
tainty source (e.g., stochastic media). Stochastic media (SM)
are comprised of constituent materials that are modeled as
being randomly mixed within the medium—except in special
cases, they cannot be described by a distribution on an interval.

While the Saltelli sampling methods have been carefully
optimized for application with deterministic solvers, their op-
timization does not consider selection of parameters that drive
the statistical noise produced by stochastic solvers. Likewise,
while surrogate-based approaches, such as use of a polyno-
mial chaos expansion, can be efficient for uncertainty sources
for which the probability basis function is known and well-
behaved, they cannot be straightforwardly applied when one or
more of the uncertainty sources cannot be easily characterized
with a well-behaved probability basis. Therefore, we seek to
develop efficient methods for computing SI in the presence
of stochastic solver noise (e.g., MC RT) and non-parametric
aleatoric uncertainty (e.g., SM) that are amenable to embed-
ding within a stochastic solver.

In [4] and previous, related work, we proposed a variance
deconvolution approach by which to remove stochastic solver
noise from a numerically computed output variance driven by
an aleatoric uncertainty source and thereby enable unbiased
computation of aleatoric uncertainty when using a stochastic
solver. We successfully applied an early version of this method
to stochastic media transport problems [5] to enable characteri-
zation of the variance caused by the stochastic material mixing.
In Ref. [6], we applied variance deconvolution to solve for SI
in a transport problem with uniformly distributed uncertainty
sources and demonstrated that the method was more efficient

than the Saltelli approach when using a stochastic solver for
at least some cases. In recent work, we proposed a symbolic
notation for describing the difference between parametric and
non-parametric uncertainty sources and derived expressions
to solve for conditional variance terms [7].

In this contribution, we propose a new, unbiased,
sampling-based method for solving SI when using a stochas-
tic solver via application of variance deconvolution that is
applicable even when involving non-parametric aleatoric un-
certainty sources. This approach is simpler than our previous
iteration [6] for using variance deconvolution to solve for
SI with stochastic solvers; incorporates our improved vari-
ance deconvolution estimator [4]; builds on our recently pro-
posed notation and derivations for describing different types
of aleatoric uncertainty sources [7]; and demonstrates not only
computation of variance caused by a non-parametric uncer-
tainty source [5], but also the ability to solve relative variance
contributions of parametric and non-parametric uncertainty
sources through SI. We numerically corroborate the method by
proposing a new, attenuation-only transport problem involving
stochastic material mixing and an uncertain cross section and
deriving closed-form transport solutions. We use the same ex-
ample problem to demonstrate the usefulness of the method for
ranking the importance of uncertainty contributions. We leave
as topics for future work the optimization of model parameter
selection and efficiency comparison with other methods such
as the Saltelli and surrogate-based approaches.

Whereas we present cross section uncertainty and stochas-
tic media as, respectively, a parametric and a non-parametric
uncertainty source, it is worth noting that the numerical model
we present for each is actually parametric, that our method
does not rely on the parametric property of either (but our
closed-form solutions rely on both), and that these desig-
nations have been chosen primarily to be illustrative since
stochastic media is often a non-parametric uncertainty source.

SI GENERATION

As we recently proposed [4, 7], let n denote statistical
sampling of a stochastic solver, w denote dependence on an
aleatoric uncertainty source that we cannot—or choose to as-
sume that we cannot—characterize with a known distribution
on an interval, and let £ represent an aleatoric uncertainty
source that we can characterize with a known distribution on
an interval. Without loss of generality, in this summary, 5
denotes sampling of a Monte Carlo radiation transport (MC
RT) solver, w denotes dependence on stochastic media (SM)
configuration, and £ denotes cross section uncertainty.

We seek to characterize a quantity of interest (Qol), in
our problem transmittance through a slab, that is dependent on
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the aleatoric uncertainty sources: Q(&, w). The transmittance
is the expectation of transmittance tallies, though, in practice,
only a finite number (V) of particle histories can be simulated
to approximate Q(£, w):

def def 1

Nﬂ

Q¢ w) = B, [f& w,n)] ~ Oy, (& w) = V Zf(‘f’ w, n(j)),
n Jj=1
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where the tilde represents an approximation polluted with MC
RT sampling noise and f(£, w, i) is a function of a sample of
the aleatoric uncertainty sources and the MC RT solver.

Similarly, the expectation of the Qol as a function of the
cross section uncertainty is

Ny,
Pa(®) € E, [0€ )] ~ By & € Ni > 0w, W), @
@ k=1
where Pg (&) is the expectation of the Qol averaged over N,
SM realizations for a value of the uncertain cross section and
PE (&) is an approximation of that quantity polluted by MC
RI"\I]“and SM sampling noise.
We recently solved for an expression for the variance due
to the parametric uncertainty as a function of the expectation
of the non-parametric uncertainty [7]:

Ee [Var, |On, ¢ w)]|
N.,

Vare [Pe(6)] = Var, [By, ©)] - E©)
in which Var, [PR (g)] is a polluted estimate of Var [Pg(£)]
computed using N, particle histories on each of N,, SM re-
alizations and NLE‘; Var, | O, (&, a))]] is the average statisti-
cal pollution catised by M RT histories and SM variability.
While Var; [Pg(£)] cannot be correctly computed by sampling
with a finite number of N, and N, it is straightforward to
compute a de-polluted (unbiased) estimator for the desired
conditional variance by tallying the other two terms and find-
ing the difference. We have called this process of deconvolving
an easily computed, but polluted, variance into a noise term
and the desired de-polluted variance “variance deconvolution.”

A minor conceptual step of recognizing that aleatoric vari-
ance can be comprised of both parametric and non-parametric
contributions enables us to generalize another of our previ-
ously established applications of variance deconvolution [4] to
solve for the total aleatoric variance while de-polluting from
MC RT noise. This is expressed as

Varg, [0 )] = Varg, | O, (6 )] = Bew [0, & w)lb

where Varg, [Q(£,w)] is the total aleatoric variance,
Varg, |On, (€ w)| is a polluted estimate of it when using
N, MC RT histories, and O'%T‘Nn(é:, w) is the 1-sigma statis-
tical uncertainty (aka, standard error of the mean) on an es-
timate of Q(¢,w) when using N, histories: O—IZQT,N”(é:’ w) &
~; VaryLf € w,m].

We make the new observation that Egs. (3) and (4) enable
unbiased (de-polluted) computation of the Sobol main effect
for the parametric contribution to the aleatoric uncertainty:

Varg [P(é)]

= 5
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Furthermore, we contribute the new observation that it is
mathematically valid to switch all occurrences of & with w and
all occurrences of w with £ in Egs. (1)-(5). The result of this
observation is that we not only have the means to compute
unbiased estimates of the Sobol main effect for the parametric
contribution to the total aleatoric variance in the presence
of MC RT noise, but, through the law of total variance, we
can compute the Sobol main and total effects for both the
parametric and non-parametric contributions:

_ Var[B=@] _ | Ee[Var Q@ wll |
§ Varg, [0, w)] Varg, [0, w)] (g;)
_ Vary[Pe@)] . Bo[Varlo@wi]
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A caveat is that, to make practical use of this approach
to solve for Var, [Pg(w)], it must be known how to hold w
constant while resampling &. For example, depending on the
SM model used, it may not be known how to maintain the
same SM realization while resampling a £ parameter such as
the average chord length of a constituent material.

Though we do not demonstrate here, this procedure can
be used to solve for the Sobol main and total effects for any
subset of parametric and non-parametric contributions to the
total aleatoric variance.

CLOSED-FORM SOLUTIONS

To verify the accuracy of the method described in the
previous section, we propose a simple test problem and derive
closed-form solutions to various terms of interest. For brevity,
we show only key steps in deriving closed-form solutions.

The test problem geometry is a one-dimensional slab
with three regions of thicknesses |, 7, and r; and a mono-
energetic beam source incident on the first region. The slab
contains three absorption-only materials with total cross sec-
tions %, 1, %, and X, 3. Region 1 contains N, subcells of equal
width Ax = r; /Ny, each of which can contain either Material
1 with probability p; or Material 2 with probability (1 — p;).
The number of cells in Region 1 containing Material 1 in a
realization of this stochastic medium can be represented as a
sample from the binomial probability density function (PDF),
Ni(w) ~ B (N, p1), Where w represents the non-parametric
aleatoric uncertainty of N;. Region 2 simply contains Material
2. Region 3 contains Material 3, whose cross section X, 3(¢) is
a function of parametric aleatoric uncertainty & ~ U (-1, 1).

The problem quantity of interest, transmittance 7 through
the slab, is a function of the optical thickness 7 of each region:

71 = Ni(W)AXZ, | + (Nipy — N1(w))AXZ, 5
= Ni(w)Ax (X —Z2) + 1%

T2 =¥ (8)
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where %,3(&) = £0, + ZA,£, 50 is the mean total cross section,
and ZIA3 the deviation from the mean. The transmittance is



therefore a function of both the non-parametric and parametric
aleatoric uncertainties,

T =T (§,w) = kexp (ki Ni(w)) exp (—k3§)  (10)
where
k =exp|-riZ - 1T — 1Tl (11a)
ki = Ax (X1 —Zp2) (11b)
ks = —r3E0y (11c)

The p—order raw moment of T (£, w) is
Ee ol T7 (€, w)] = B¢ [E, [T7 (€, w)]]
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where B, (x) represents the PDF of the binomial variable
Nj(w) being equal to x:

Bo(x) € Pr(Ni = x| Nugw, p1)
Niot! _ (13)
= X 1 _ (Nior—X)
AN~ 1PV
Eq. (12) enables computation of the variance of T (¢, w)
over both aleatoric uncertainties, Varg,, [T (£, )], by expand-
ing the expression for variance,

Varg, [T (¢, 0)] = Beo, [T (£, 0)| - Beo [T € ). (14)

This is the denominator of the main and total effect SIs. For
comparison with numerical results, we calculate analytic so-
lutions for the numerators in Eqgs. (6a) and (6b). Taking
Varg [Pr(é)] to indicate the variance of the conditional mean
of T (¢, w) given &, over all &, we find that

Vare [Pe(9)] = Be [Pe*(€)| - Be [Pe(©)]
= B¢ [P2(@)| - Beo [T € 0.

The second term is the first-order raw moment of T (¢, w),
calculable from Eq. (12). The first term, the second-order raw
moment of Pg(¢), is

2
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Inserting Egs. (14) and (15) into Eq. (6a) yields

kzsi;2£2k3] (2N Bu(x) exp (—klx)) —EBeo [T (€, w)]
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Following the same process to calculate Var,, [Pr(w)] yields

smh k” sinh“[k3 ] (ZNI(}([) Bw(x) exp (—2k1x)) _ E{f,w [T (é_-’ 6())]2

S, =
Eeo [T2 (¢, w)] = Beo [T (€, 0)]

(18)
Given these closed-form solutions for the main effect Sls,
Egs. (6a) and (6b) provide closed-form solutions for the total
effect Sls.

RESULTS

We solve two numerical problems each using the problem
description from the previous section with r; = r, = r3 = 1.0,
%1 =30,%, =01, 223 = 1.0, and p; = 0.3. For Problem
1, N,y = 10 and Efs = 0.25. For Problem 2, N,,, = 100 and
ESS =0.75.

For each quantity on both problems, we use N, = 20.
For each problem, we first solve for the average trans-
mittance (Eg,, [T (£, w)]) and combined aleatoric variance
(Vare,, [Q(, w)]) using 10,000 samples of the aleatoric un-
certainty space (i.e., & and w). We then use N, = 10 and
Ng = 1000, for a total of 10,000 aleatoric samples, to solve
for Var, [Pg(£)]. Next, we use Ny = 10 and N,, = 1000, for a
total of 10,000 aleatoric samples, to solve for Var,, [Pg(w)].
For each of these numerically computed quantities, we aver-
age the computed quantities over 40 repetitions and use those
repetitions to compute a standard error of the mean (SEM) for
the quantity. Closed-form values, numerically computed mean
and SEM values, and error in numerical values reported as
number of 1-sigma SEMs are reported in Table I. In addition
to the above-mentioned quantities, to enable numerical inter-
rogation and reproducibility, we report intermediate computed

values for Vare,, | Ox, (€, w)| and E¢,, [a}em & w).

SI are computed using Eq. (6). To compute these quan-
tities from the total aleatoric variance and each conditional
variance, statistical uncertainties are propagated using the stan-
dard error propagation formula for independent variables

2 2
o () (L) (L e

0z
Error is computed compared to closed-form solutions in terms
of number of standard deviations and listed in Table 1.

We first observe that all numerically computed values
agree with closed-form solutions within no more than 1.58
standard deviations, that the error is usually less than 1 stan-
dard deviation, and that the error is stochastically either pos-
itive or negative. This degree and form of agreement with
closed-form solutions corroborates the new numerical method.

We secondly observe the SI of these two problems to gain
insight to their practical value: whereas the transmittance and
overall aleatoric variance for each problem are roughly the
same, our numerically computed SI provide a formal mecha-
nism by which to measure that the SM provide the majority
of the variance (~90%) in Problem 1 and, by contrast, the
uncertain cross section provides the majority of the variance
(~90%) in Problem 2.




TABLE I. Closed-form and Numerically Computed Values

Problem 1 Problem 2
Closed \ Numerical | SEM | Error Closed \ Numerical | SEM | Error
Unconditional Mean and Variance Unconditional Mean and Variance
Eeo [T, w)] 0.1387816 | 0.1387030 | 0.0001423 0.55 0 || 0.1395753 | 0.1396815 | 0.0001744 | —0.61 o
Varg,, [QN,] ¢, w) N/A | 0.0094396 | 0.0000240 N/A N/A | 0.0097554 | 0.0000291 N/A
E: . [0',2”’ N, (¢, w)] N/A | 0.0057908 | 0.0000048 N/A N/A | 0.0058113 | 0.0000058 N/A
Vare, [Q¢, w)] 0.0036845 | 0.0036488 | 0.0000226 1.58 o= || 0.0039277 | 0.0039441 | 0.0000271 | —0.61 o
Conditional Variance Values Conditional Variance Values
Var, [Pe(w)] 0.0032181 | 0.0031919 | 0.0000324 0.81 o || 0.0003430 | 0.0003469 | 0.0000102 | —0.38 o
Varg [Pe(é)] 0.0003996 | 0.0004065 | 0.0000090 | —0.77 o= || 0.0035227 | 0.0035377 | 0.0000225 | —0.67 o
Sobol Indices Sobol Indices
So 0.8734261 | 0.8747955 | 0.0103919 | —0.13 o || 0.0873300 | 0.0879516 | 0.0026643 | —0.23 o
Se 0.1084529 | 0.1114180 | 0.0025490 | —1.16 o || 0.8968785 | 0.8969538 | 0.0083963 | —0.01 o
S, 0.8915471 | 0.8885820 | 0.0025490 1.16 o || 0.1031215 | 0.1030462 | 0.0083963 0.01 o
ST 0.1265739 | 0.1252045 | 0.0103919 0.13 0 || 09126700 | 0.9120484 | 0.0026643 023 o
CONCLUSIONS Government. This work was supported by the Center for Exas-

We leverage the recently established variance deconvolu-
tion method to propose a new, unbiased method for computing
SI when using a stochastic solver such as a MC RT solver.
We demonstrate that, since this method does not rely on the
parametric property of uncertainty sources, as long as samples
of each uncertainty source can be kept constant while the other
uncertainty sources are resampled, this approach can not only
solve SI for well-behaved parametric aleatoric uncertainty
sources such as uncertain cross section values, but also for
challenging non-aleatoric uncertainty sources such as stochas-
tic media. To enable numerical testing of the new method,
we derive closed-form solutions for a radiation transport test
problem involving stochastic media and an uncertain cross
section value. Numerical results agree with closed-form solu-
tions within statistical uncertainty corroborating the numerical
approach. Via two numerical test problems, we demonstrate
the ability of SI to rank the fractional contribution of each
uncertain input (including SM) to the output uncertainty.

In future work, we plan to examine applications with
more than two aleatoric uncertainty sources, to compare the
method’s efficiency to other methods, to optimize the method’s
efficiency by re-using samples to contribute to computing more
than one term, and to apply the method to more complicated
transport problems such as those with scattering.
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