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1. INTRODUCTION

Noise is a problem in hospitals. Restorative sleep is important to recovery and the sonic
environment in hospitals—one complicated by the use of fairly assertive alarms to ensure that
sometimes-overworked medical personnel become alert to emerging needs—is often not conducive
to uninterrupted restful sleep.! However, it is one thing to know that a problem exists, another to
quantify it, and another still to solve the problem. While each of these steps is important in its
turn, this paper focuses on the second step: the question of how best to quantify hospital noises in
ways relevant to the preservation (or disruption) of restful sleep. The current effort began when
I happened upon an ASA presentation given by Jo Solet and learned that she and her partners
for the study had measured subjects’ sleep state transitions using polysomnography while they
were exposed to various characteristic hospital noises recorded within a hospital environment, and
administered in the laboratory to healthy subjects prescreened for intact hearing.>* The character-
istics of the original study were excellent in several regards including the use of polysomnography
(the combination of electroencephalogram, electrooculogram, electrocardiogram, and electromyo-
gram widely hailed as the gold standard in sleep state assessment*), and the use of a wide variety
of hospital-relevant sounds with different distinguishing traits that could allow for a variety of
informative comparisons.

After hearing the talk, I asked if they had applied sound quality metrics to their sounds or if they
had used only the reported A-weighted measure. Sound quality metrics had not yet been applied
and, more importantly, the sound files used in the original study were retained so it was possible
to reanalyze the data in order to learn what additional insights these tools might make available.

2. DATA PREPARATION

The sound files were calibrated by assuming a maximum presentation level of 70 dB A-
weighted overall level for all sounds. Note: The variable used in the original analysis was “A-
weighted fast-response sound level” exceeded 10 percent of the time within each 10-second signal;
however, this is the value used in the analysis rather than the values that were used to determine
the presentation levels. From there, the sounds were attenuated in 5-dB increments to reproduce
the variety of stimulus levels from the study, and the sounds were evaluated as discussed in the
section 3.

The data from the middle row of Fig. 3 of Ref. 2 was captured by applying the MATLAB
user-created function grabit® to screen captures of its three individual subplots, which allowed the
underlying values to be retrieved with acceptable accuracy. The form of these data appears to be
sigmoidal or, synonymously, logistic, which makes sense because this functional form captures the
asymptotic behavior of the probability: at sufficiently low levels the sound would be imperceptible
and be expected to elicit no additional awakening whatsoever (resulting in a lower arousal proba-
bility value approaching zero or no additional effect), and at extreme high levels the sounds would
be expected to elicit effectively universal awakening in individuals with hearing intact (resulting in
a probability value approaching one). Consequently, the data were transformed using the formula
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which as the inverse of the logistic function with known upper bound, 1, and lower bound, 0,
transforms probabilities, p into roughly linear functions, yr, of underlying variables; these trans-
formed probabilities were then used in subsequent analyses. To gain an idea of the effect of this
transformation, the real and transformed probability values are plotted in Fig. 1 for stage 2 and
stage 3 sleep, N2 and N3, respectively. Note that, in contrast to the original probabilities, the
transformed probabilities have nearly constant slope once an initial threshold value is achieved. A
possible explanation for this threshold effect is that the growth of loudness is much more rapid at
low levels as a result of cochlear amplification effects; potentially this deviation from linearity may
be alleviated when loudness metrics are employed that take this effect into account (in contrast to
level metrics which do not). Nevertheless, the near-constancy of slope holds both within individual
lines and among collections of lines, making the transformed variable a nearly ideal input for linear
regression.

3. SOUND QUALITY METRICS

The sounds from the original study (prepared as described in Sec. 2) were evaluated using an
implementation® of the time-varying extension to the ANSI $3.4-2007 loudness standard,” and a
compatible implementation of sharpness.® Because the loudness metric employed provides a se-
quential time series of loudness values spaced a 1-ms intervals,” some measure that aggregates
or summarizes the values needs to be adopted. Several measures have been proposed as possibly
capturing aspects of the loudness of a sound; these include: the short-term loudness for the loud-
ness experienced instantaneously, and the peak of the long-term loudness for the overall loudness
impression for an extended sound.” However, it is not immediately clear which measures would be
the best available predictor of arousal from sleep. Accordingly, a basket of loudness-based mea-
sures were tried including maximum short-term loudness, the log of the short-term loudness rate
of change, and the log sum of the loudness over the course of the signal (somewhat like a sound
exposure level measure).

The sounds were also evaluated informally for tonality—the degree to which a sound is qual-
itatively similar to the subjective experience of a single-frequency sine wave—by the first author,
dividing them into tonal, somewhat tonal and not tonal categories numerically represented as 1, 0.5,
and 0, respectively, an admittedly crude approach. During the presentation of this study at 2022
Denver ASA Healthcare Acoustics session, hosted by the senior author, the sounds were played for
the audience who rated them informally; the senior author participated in the raw audience poll,
and I will include the results of this informal poll with the understanding that this interactive and
entertaining activity made no serious effort to rise to the level of rigor of a formal listening study.
The results of these informal activities are given in Table 1. In this table the first author ratings,
the raw audience votes that a particular sound was “tonal,” and the number of audience votes di-
vided by the highest number of votes received are given in the second, third, and fourth columns,
respectively, while the sound description is given in the first.

4. ANALYSIS

With sound quality metric values for loudness, sharpness, and informal listening observation
measures for tonality, linear regression was performed on the transformed probabilities, py. Linear
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Figure 1: The use of Eq. 1 to transform the probability results in approximately linear behavior
across its range after an initial minimum threshold is achieved. Note: Fig. 4 includes the legend
Jor this figure.




Table 1: Informal tonality ratings by the first author, and by the talk audience

Sound my rating | audience poll | audience poll
(raw) (normalized)
Alarm 1 9 0.64
Phone ringing 1 14 1
Good conversation 0 1 0.07
Bad conversation 0 2 0.14
Paging 0 1 0.07
Door creak 0.5 6 0.42
Horrific copier 0.5 6 0.42
Snoring 0 1 0.07
Ice machine 0 5 0.36
Toilet flush 0 0 0
Laundry cart 0 0 0
Traffic? 0 1 0.07
Helicopter 0 3 0.21
Jet aircraft 0 0 0

regression attempts to determine the linear function that minimizes the residuals (deviations from
the linear function within the data) to achieve the best possible fit. To begin with, the loudness or
loudness-like measures are evaluated in order to select the one that explains the largest portion of
the awakening probability. This will enable us to identify and focus on the most salient loudness-
like parameter within the later analyses. The loudness-like measures under consideration are:

e maximum short-term loudness,

e log sum of short-term loudness,

e log maximum rate of change of short-term loudness, and
e L Ajp10-s measure from original analysis.

The results were fairly unambiguous: as seen in Fig. 2; the sound exposure level-like log sum over
the time history log ) - S explained only 6.6% of the variance, and could thus be excluded as the
main loudness-based measure; the maximum short-term loudness, max .S, did somewhat better at
13%; however, neither of these did as well as the measure originally used in the paper, the fast A-
weighted level exceeded ten percent of the time, LA;¢10—s, Which predicted 34% of the variance;
the log of the maximum rate of change of the short term loudness, however, did considerably
better than all of the other measures accounting for 63.5% of the variance, a nearly two-fold boost
in explained variance over the original measure. The log rate of increase of loudness is thus a
far stronger predictor of arousal in at least this sleep stage than the other loudness-related factors
examined.
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Figure 2: Of the four options explored, the rate of change of loudness (d) is far more effective
at predicting arousal by hospital noises, explaining nearly twice as much of the variance of the
transformed probability as the next most capable predictor, LA 10—; (c).
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Figure 3: Both sharpness and tonality contribute to arousal; however, of the two, tonality ap-
pears to contribute more as a single variable, and the audience-assessed tonality was more ef-
fective at predicting arousal than the author-assessed version, which predicted nearly a third of
the total variance!

The sharpness measure and the first author and audience-based ratings of tonality are next
considered, as shown in Fig. 3. The sharpness measure explains 12.8% of the variance as a single-
variable contributor. Of the two tonality ratings, the first-author rating of the tonality (part (b)
of the figure), which categorized it into tonal, 1, somewhat tonal, 0.5, and not tonal, 0, predicted
28.8% of the variance; this was less than the audience-based measure (in which individual audience
members voted for tonal, 1, or not tonal, 0, and the sum was normalized by the maximum number
of votes received, which predicted 32.5% (nearly a third) of the variance as a single variable. It
is important to realize that these additional metrics can be correlated to some finite degree with
loudness and with each other; consequently, their total contributions to a combined model may
differ somewhat from the sum of their individual shares of the variance. With that caveat, models
using log of loudness increase with each of these variables are next considered. When log max dS
and maximum sharpness are used together in a model, 68.2% of the variance is explained an
increase of 4.7%; this substantial reduction in explanatory power when sharpness is combined
with the loudness measure suggests that at least part of sharpness’s predictive power comes from
its correlation with loudness, upon which it has a modest dependency. When loudness and tonality
as rated by the audience are used in a model, 83% of the variance is explained, an increase of
19.5% from the use of log max dS alone, a substantial increase; however, when tonality rated by
the first author is instead used, 85.3% of the variance is explained, an increase of 21.8%. Taking
the model with log max dS and author-rated tonality, and adding sharpness to it explains 86.3%
of the variance, an increase of only 1%, which suggests that sharpness may not be an especially
important explanatory factor in arousal responses to the sounds in this data set.

To give a more visual idea of the usefulness of the model in expressing the relatively simple
relationship between the metric parameters and arousal, the probability of arousal is shown as
originally expressed as a function of LA 19— and as a linear combination of log max dS and




author-rated tonality is shown in Fig. 4 for Stage 2 and Stage 3 sleep. The same model materially
improves collapse for data from both stages of sleep, suggesting that loudness rate of change and
tonality are similarly important during both depths of non-REM sleep. This effectively gives a
model that very reliably predicts the likelihood of patient awakening in response to hospital noise
sound qualities during N2 and N3 stage sleep. Notably, the collapse is substantially farther to the
right for N3, suggesting that this stage of sleep has a higher threshold of arousal, consistent with
the notion of the deeper phases of sleep being more biologically protected. However, within the
context of the existing model, this could largely be taken care of by using a constant to adjust for
non-REM sleep stage.

Also notable is the fact that there is still a significant amount of lateral spread within both the
N2 and N3 data; this suggests that application of further sound quality metrics such as, possibly,
roughness or fluctuation, could result in further collapse. Both measures evaluate changes in the
temporal envelope: the sensation of roughness is most sensitive to amplitude modulations between
15 and 300 Hz while fluctuation is sensitive to modulation frequencies below 30 Hz, and both mea-
sures have been shown to contribute to annoyance.'® While predicted psychoacoustic annoyance
and ability to generate awakenings may not be identical to one another, the hypothesis that qualities
that increase likelihood of annoyance may increase likelihood of awakenings seems both a good
starting point, and one that matches human experience. However, it also bears stating that within
this data set some of the alarm sounds exhibit both tonality and a rough or fluctuating character,
raising the possibility that a portion of the share of variance attributed to tonality in the present
model could end up being attributed to one of these qualities in a more inclusive model.

S. CONCLUSIONS, IMPLICATIONS, AND FUTURE EFFORTS

Several key qualitative take-aways are available from the present examination; perhaps the most
import of these is that it is not necessarily the loudness of a sound that generates awakenings, but
the rate at which the loudness increases, accounting for more than three fifths of the variance. Next
to this is the key role of tonality in the present model in predicting a further fifth of the variance.
While future analyses with a larger suite of metrics may improve upon these results, and may
subtly alter the balance of prediction between metrics, the ability of sound quality metrics to predict
arousal during non-REM sleep with greater precision than standard level-based metrics warrants
their use in wider contexts in sleep research and, in particular, calls for their use in evaluating the
sonic acceptability of devices in the health care service environment.

If we were to take the results of this study as perfectly capturing the psychoacoustic deter-
minants of awakening, the implications for policy would be that awakenings could be prevented
through limiting the rate of rise and tone-like qualities of sounds. As it stands, however, these
policy implications should be taken as hypotheses to be tested rather than established formula for
preserving sleep. They are, nevertheless, hypotheses worth testing inasmuch as they potentially
point the way to significantly better preservation of sleep than is possible using the guidance from
current A-weighted metrics. It is also worth noting that some of the same qualities, e.g., tone-like
character, that seem to predict awakening also are features of sounds designed to attract attention,
and may be important to the ability of medical personnel to appropriately respond to them. Conse-
quently, it may be easier in some cases to alter the loudness rise profile of alarm sounds while still
maintaining their functionality as alarms, than to remove the tonal qualities. The Senior author,
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Figure 4: The collapse of the data improves substantially when log max dS' and author-rated
tonality are considered. This is even true for stage 3 sleep for which the model was not originally
adjusted.




who is trained as both a clinician and researcher, suggests an important follow-on study from a
policy standpoint should be undertaken to develop a hierarchy of hospital alarm signals needed for
sustained effectiveness in alerting medical personnel to immediate patient needs and to compare
these for capacity to disrupt patient sleep. In a care environment crowded with a multitude of
alarms with varying clinical significance or insignificance vie for attention,'! options for limiting
and streamlining alarms to focus attention on clinically relevant monitoring results should be ex-
plored and implemented. These efforts should be combined with existing exploratory efforts to
preserve the sleep environment of hospital patients to maximize its restorative benefits.!!

While this study has clearly opened the door to further study of the applicability of sound qual-
ity metrics to sleep disruption and demonstrated the power of this approach, much more remains
to be done. This study has so far examined only two sound quality metrics and used informal
evaluations of a third to evaluate the sounds. The informal evaluation should be replaced by either
a jury study or a formalized tonality metric. Fluctuation and roughness should also be evaluated
in order to remove the potential for confounding the effects of tonality with those of, e.g., rough-
ness. Additionally, while this study has focused on NREM sleep stages completeness suggests that
REM should be addressed also in order to determine whether the present model also has predictive
benefits over level metrics for awakening during REM sleep.
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