This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in

the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Q: A Sound Verification Framework for Statecharts and
their Implementations

Samuel D. Pollard
Sandia National Laboratories
Livermore, California, USA
spolla@sandia.gov

Geoffrey C. Hulette
Sandia National Laboratories
Livermore, California, USA

Blake C. Rawlings
Sandia National Laboratories
Livermore, California, USA

Abstract

We present the Q Framework: a verification framework used
at Sandia National Laboratories. Q is a collection of tools
used to verify safety and correctness properties of high-
consequence embedded systems and is designed to address
the issue of scalability which plagues many formal methods
tools. Q consists of two main workflows: 1) compilation of
temporal properties and state machine models (such as those
made with Stateflow) into SMV models and 2) generation of
ACSL specifications for the C code implementation of the
state machine models. These together prove a refinement
relation between the state machine model and its C code im-
plementation, with proofs of properties checked by NuSMV
(for SMV models) and Frama-C (for ACSL specifications).

CCS Concepts: » Theory of computation — Program
verification; Verification by model checking; - Software
and its engineering — Formal software verification;
State based definitions.

Keywords: formal methods, state machines, C, specification
languages, temporal logic, model checking

ACM Reference Format:

Samuel D. Pollard, Robert C. Armstrong, John Bender, Geoffrey C.
Hulette, Raheel S. Mahmood, Karla V. Morris, Blake C. Rawlings,
and Jon M. Aytac. 2022. Q: A Sound Verification Framework for
Statecharts and their Implementations. In Proceedings of the 8th

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

FTSCS °22, December 07, 2022, Auckland, New Zealand

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9907-4/22/12...$15.00
https://doi.org/10.1145/3563822.3568014

Robert C. Armstrong
Sandia National Laboratories
Livermore, California, USA

Raheel S. Mahmood

Sandia National Laboratories
Livermore, California, USA

John Bender
Sandia National Laboratories
Livermore, California, USA

Karla V. Morris

Sandia National Laboratories
Livermore, California, USA

Jon M. Aytac
Sandia National Laboratories
Livermore, California, USA

ACM SIGPLAN International Workshop on Formal Techniques for
Safety-Critical Systems (FTSCS °22), December 07, 2022, Auckland,
New Zealand. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3563822.3568014

1 Introduction

Sandia National Laboratories develops software for high-
consequence digital control systems. With embedded control
systems, bugs can have disastrous consequences [25]. And
so, the high-consequence nature of our work means that
it is worthwhile to spend significant effort to develop rela-
tively complex formal statements about required behavior
and verify an implementation against them.

Our approach to verifying implementations is subject
to two main design constraints. First, our models are con-
structed from interacting subsystems with different clock do-
mains, but requirements must apply to the system as a whole.
Therefore, we require reasoning about the asynchronous
composition of many interacting subsystems via system-level
temporal properties. Note that here we do not focus on the
details of the clock domains, such as those modeled with
CCSL [2], only that our systems may be asynchronous.

Second, our approach must integrate into existing engi-
neering code bases and workflows. At Sandia, system de-
signers already write specifications in an informal, but hier-
archical, state machine-like graphical language along with
English-language requirements documents. These specifica-
tions are then written in Stateflow [27] and implemented
in C. We (the formal methods team or “analysts”) have the
fortune of close communication with the system designers
and software engineers, which allows us to ensure a clean
separation of hardware interfacing (via API) and enforce
coding standards (such as restricting what state functions
may modify or the structure of state machines). We later
explain how these restrictions enable our goal of automated
verification.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2022-15655C

https://orcid.org/0000-0002-3275-4064
https://orcid.org/0000-0002-3754-6731
https://orcid.org/0000-0003-0102-9553
https://orcid.org/0000-0003-0588-3001
https://orcid.org/0000-0002-2668-3693
https://doi.org/10.1145/3563822.3568014
https://doi.org/10.1145/3563822.3568014
https://doi.org/10.1145/3563822.3568014

FTSCS 22, December 07, 2022, Auckland, New Zealand

Existing work does not satisfy the full contstraints of our
problem space. Verifying state machine abstractions of sys-
tems in modeling languages such as TLA+[21] have shown
success in academia and industry. However, modeling lan-
guages do not establish whether an implementation matches
the model. This is not a strong enough correctness argu-
ment for our problem domain, especially considering the
complexities of C.

Separately, there has been extensive work to check tempo-
ral properties directly against implementations [5], but these
approaches do not support sound compositional reasoning
beyond abstract specifications of external behavior. Lastly,
significant work has been done to enable manual proofs of
labeled transition system specifications against an imple-
mentation [4, 19] but the manual, time-intensive, nature of
these approaches and their sensitivity to code changes would
require more time and resources than we have to dedicate.

To address these gaps in the research we developed the
Q Framework (Q for short), which compiles Stateflow di-
agrams corresponding to a static, parallel composition of
one or more transition systems into an intermediate repre-
sentation. From this IR, Q then compiles both to SMV for
model checking [14] and Frama-C ANSI C Specification lan-
guage (ACSL) specifications [16] for static analysis of the C
code implementation. If the temporal properties hold for the
model and the ACSL proof obligations can be discharged and
proven by Frama-C, Q provides strong, automated evidence
that the C implementation refines the model’s behavior and
thus satisfies the desired temporal properties.

Our paper is structured as follows. In Section 2, we de-
scribe the architecture of Q by way of modeling a coffee
maker. We then precisely describe our notion of a refinement
relation between the model (state machines) and implemen-
tation (C code), the compositionality of state machines, and
some mathematical arguments for why these definitions of
compositionality and refinement are sound (Section 3), and
last conclude with a discussion on related and future work
(Sections 4, 5).

The Q Framework is not currently open source, however
some examples as well as the formal semantics of QSpec, are
available here:

(link)

2 Architecture

We now describe the Q Framework at a high level. Figure 1
describes the overall architecture of Q and we first provide
some context. The workflow of Figure 1 roughly flows from
the top-left downwards, where the C source code and State-
flow models are built based on requirements documents
(written in English and with informal diagrams). From these,
we manually write the desired linear temporal logic (LTL)
and computation tree logic (CTL) properties. Then, these
are passed as input into the various parts of Q (described

Pollard, Armstrong, Bender, Hulette, Mahmood, Morris, Rawlings, Aytac

Stateflow
Test Case

Counter-
example

obeys style
T V.

pecify UB

Coq

Stateflow
Models

QSpeckler

C Source

Alt-Ergo

Proof? Proof? Proof? SAT?

Figure 1. Architectural overview of Q, managed in general
by QWorkflow. Ellipses are inputs, rectangles are tools, blue
text are developed by Sandia, and double-struck shapes re-
quire manual specification or checking. UB refers to both
unspecified behavior and implementation-defined behavior.

later in this section). The final outputs of Q are then: the C
source with ACSL specifications, the proofs that the C code
matches the specifications (via the back-ends of Frama-C),
and the proofs the state machine models obey the LTL/CTL
properties (via NuSMV).

This process is iterative, since the system designers de-
scribe the requirements in English and Stateflow, then pass
the designs to the software engineers, who may find inconsis-
tencies or underspecifications. And further, system analysts
(users of Q) may find errors or further inconsistencies. This
is aided by a feedback loop in Q, as well, for if the SMV model
does not obey the desired properties, it emits a counterex-
ample from which we can then generate a Stateflow test
case, in order to further refine our LTL/CTL properties or
the Stateflow model itself.

Throughout this section, we use an illustrative model of
a “secure coffee maker” At first glance, this example seems
somewhat contrived. However, the compositionality of sys-
tem designs allows systems of similar complexity to be used
in realistic designs. The structure of this section follows the
design of the coffee maker, showcasing the relevant parts of

Q. In brief,

§ 2.1 Modeling systems using Stateflow.
§ 2.2 QSpec: a statechart language which evolved from SCXML.

Q: A Sound Verification Framework for Statecharts & their Implementations

confirmed, brew := @

coin

I'confirmed,
brew < 2

!confirmed

start brew < 2,
brew:=0 brew += 1
confirmed
start —
coin

Figure 2. Model of a coffee machine with a coin slot and con-
firm (confirmed) and cancel (! confirmed) buttons, along
with a payment system.

§ 2.3 QSpeckler: A tool to convert Stateflow models into
those compatible for QLang.

§ 2.4 LTL and CTL properties.

§ 2.5 QLang: the compiler from QSpec Statecharts into an
SMV model, which also generates ACSL function con-
tracts.

§ 2.6 QFact: a clang plugin to add ACSL annotations to C
code, as well as perform code transformations to en-
able verification.

§ 2.7 QWorkflow: scripts used to orchestrate the interaction
of the different parts of Q.

§ 2.8 Our use of external tools and languages.

2.1 State Machines and Stateflow

Currently, state machine models are designed in Stateflow
from the requirements documents provided by system de-
signers along with domain knowledge of the system and
the C code implementation. While the Stateflow models and
LTL/CTL properties require some expertise in which proper-
ties can be formalized and proven, in our experience, system
analysts need not be formal methods experts to use Q. We
provide an example of a transition system model in Fig-
ure 2. The top machine begins in the Ready state, inserting
a coin puts the machine in the Confirm state, and a toggle
button (confirm/cancel) begins or ends the brew process,
which takes two ticks of time; coffee is dispensed when
the machine transitions from Brewing to Ready. The bot-
tom machine models a payment system (or infinitely thirsty
coffee drinker), which continuously pays coins and presses
the confirm button and is composed (in parallel) with the
top machine, where the transitions coin and confirmed are
matched.

Most realistic Stateflow models consist of interacting sub-
systems; for any verification framework of state machine-
like designs to be useful, it must support a notion of parallel
compositionality between state machines. For example, our
systems require parallel composition with different clock
rates of the corresponding systems. To accomplish this, we

O 0 N N R W N =

BW W W W W W W W W W NNDNDN NN DN DN DN = s e s e e s e
O O 0 NN U R WD R O 0 0N R WD RO 0 0N RN RO

FTSCS 22, December 07, 2022, Auckland, New Zealand

<?xml version="1.0" encoding="UTF-8"?>
<gspec>

<datamodel>

<data id="brew" type="int"

<data id="coin"

20)"/>
intent="input"/>

range="(range 1
type="bool"

<data id="confirmed" type="bool" intent="input"/>
</datamodel>
<state id="System">
<parallel>
<sequential> <!-- brewer system -->
<initial> <!-- Ready --> </initial>

<state id="Brewing">
<transition label="Brewing_Brewing"
target="Brewing">
<guard name="check_brewing"
predicate="(< brew 2)"/>
<assign location="brew"
expr="(+ brew 1)"/>
</transition>
<transition label="Brewing_Done"
target="Ready">
<guard name="check_done"
predicate="(= brew 2)"/>
<assign location="brew" expr="0"/>
</transition>
<transition label="Brewing_Confirm"
target="Confirm">
<guard name="check_confirmed"
predicate="(/\ (~ confirmed)
(< brew 2))"/>
</transition>
</state>
</sequential>
<sequential>
<!-- payment system -->
</sequential>
</parallel>
</state>
<xi:include href="assertions.qi"/>
</qgspec>

Figure 3. The coffee maker state machine modeled in
SCXML, with most state transitions elided.

also include stutter steps [9], which are self-transitions that
do nothing (we elide these in our figures). We explain the
intricacies of compositionality further in Section 3.

2.2 QSpec

We developed QSpec because of our need for an extensible
language to model our particular flavor of state machines.
QSpec was inspired by SCXML [6], and has evolved so it
is no longer completely compatible. We show an abridged
version of the coffee maker SCXML in Figure 3, but remark
that in general, QSpec files are not written by hand.

FTSCS 22, December 07, 2022, Auckland, New Zealand

We also use namespaces and file inclusions to manage the
complexity of state machines, as shown in Line 39. We do
not show the contents of assertions.qi (qi short for “Q
Include”), but they are essentially SCXML representations of
LTL/CTL properties. These properties are described further
in Section 2.4. Additionally, the sequential portion here
simply means a “normal” state machine, which is also known
as a region or container within the parallel composition con-
struct.

In a QSpec, transitions are simply relations on states and
model variables with syntactic sugar to express operations
like assignment and transition guards. Relations are expressed
in a simple first-order logic as predicates over model vari-
ables. The logic supports a minimal set of data types includ-
ing booleans, integers, and sets of symbolic constants (we
plan to add support for user-defined types like sums and
products). Because the logic of QSpec is so simple, it is easy
to translate to both SMV and ACSL using QLang.

2.3 QSpeckler

We mentioned that QSpec models are not written by hand:
QSpeckler is the tool that generates QSpec from a particular
Stateflow model and LTL/CTL properties about it (which
both are typically hand-written). The challenge of this trans-
lation lies in intricacies of Stateflow; for example, one trans-
formation we must perform is from the MATLAB expression
language in Stateflow into the S-expressions required for
QLang. In actuality, we use a separate tool, but conceptually
this occurs alongside QSpeckler.

Another feature of QSpecker is its test case generation:
since it understands Stateflow models, provided a counterex-
ample (that is, an execution where the LTL or CTL properties
do not hold for a given SMV model), QSpeckler can generate
the corresponding Stateflow test case, which allows feed-
back to system designers of incorrect behavior, or to system
analysts to indicate potential specification bugs.

2.4 LTL and CTL Properties

There are many different safety and liveness properties we
may want to state for a given system. We state one safety
and one liveness property below in English and CTL. We do
not describe the translation from CTL into QSpec, but it is
straightforward, only requiring an intermediate conversion
to an S-expression.

1. Safety: the coffee maker should never go back to the
confirm state when coffee is done brewing. In CTL:
AG !(state = confirm & brew = 2).

2. Liveness: provided a coin was inserted, the coffee maker
should eventually dispense coffee. In CTL:
coin -> EF (state = ready).

We next briefly explain these CTL properties. CTL is a
branching-time temporal logic that combines temporal op-
erators with path quantifiers; a temporal operator describes

Pollard, Armstrong, Bender, Hulette, Mahmood, Morris, Rawlings, Aytac

an execution path in terms of the states along that path,
and a path quantifier describes a state in terms of the paths
that begin in that state. The path operator G means “in each
state (Globally)” and F means “in some Future state”. The
path quantifier A means “for All paths” and E means “there
Exists a path”. Thus, in the preceding examples, AG represents
invariance—a safety property—and EF represents reachabil-
ity—a liveness property. We do not focus on the details of
model checking, other than we delegate the model checking
to NuSMV, which supports both LTL and CTL properites.
More information is available from Clarke et al [14].

2.5 QLang

QLang is a software tool that soundly transforms a QSpec
specification into 1) an SMV model with temporal properties,
2) a C include file with an ACSL-encoded transition system to
validate a C implementation, and 3) a set of first-order proof
obligations that must hold for the model to be self-consistent
and also for the SMV and ACSL outputs to be consistent
with each other—that is, the ACSL model is a refinement
of the SMV model (See Section 3.2). The proof obligations
are checked via direct calls to NuSMV or to Frama-C’s back-
ends (which are typically SMT solvers) and no other output
is generated if they cannot be discharged.

Conceptually and in practice, QLang reduces a QSpec’s
structured state machines to a more universal “flat” transition
system representation according to Q’s semantics for those
operators. This process yields a (much) larger but semanti-
cally equivalent state machine that is easy to output directly
as an SMV model and ACSL predicates (see Section 3.2).

In QLang, a “flat” state machine (a set of labeled states
and transitions without nesting or parallel composition) is
called a Machine. The model part of a QSpec (the structured
state machine) is called a Chart and is an inductively-defined
structure that is either the parallel composition of two or
more Charts or else a nested composition consisting of a
parent Machine with a map from each state to zero or one
Chart (the children). We provide the formal semantics of
QSpec in the supplementary repository, but informally, par-
allel composition is (recursively) defined as the product of
its child transition systems, while nesting is defined as a (re-
cursive) embedding of the mapped child transition systems
into the parent state. In an embedding, transitions into the
parent state are composed with the child’s initial transitions,
self-transitions on the parent are composed with each of the
child’s inner transitions, and transitions out of the parent
are composed with the child’s terminal transitions. In addi-
tion we support abort transitions, which are composed with
every transition and can exit the child machine from any of
its states.

The “flattening” process used in QLang grows the size of
the state machine exponentially and this is often a practical
issue, even for relatively small models with more than two or
three parallel states. SMV output, for example, is sometimes

Q: A Sound Verification Framework for Statecharts & their Implementations

many gigabytes in size. The advantage of this approach is
in its simplicity and resulting clarity of QLang’s implemen-
tation; we are thus confident that transformed models are
correct with respect to QSpec’s semantics. Conversely, the
exponential size increase poses an issue with respect to the
scalability we advertised.

One solution we employ is to define as invariants the in-
ference rules defining composition in QSpec, and provide
them as SMV invariants. In effect, this passes the problem
onto NuSMV, which instead constructs the parallel composi-
tion instead of QLang. In theory, this would have no effect
(both scenarios exponentially increase the size of the state
machine), however in practice this sometimes can help, at
least with the input file size issue. Another solution we em-
ploy is compositional model checking via assume-guarantee
reasoning [15]. In both cases, these permit better scalability
but do not come for free: sub-systems must be manually
decomposed, any any modifications to the global state that
a component makes must be listed as assumptions for other
models (for example, messages sent on a bus). Fortunately,
modular design of distributed systems is generally good de-
sign, so these assume-guarantee requirements are in practice
reasonable.

2.6 QFact

QFact is a clang tool which annotates a given C program with
its ACSL specification. QFact also generates frame conditions,
which are additional constraints on the transition between
two system states and provide further ACSL specifications.
One other issue which complicates verification of C code is
its large amount of implementation-defined or unspecified
behavior (for example, the size of machine integers). Many
discrepancies in C are not interesting from a theoretical and
optimization sense, and merely complicate the verification
process. To address this, we leverage a simplified C language
used in the CompCert C compiler, called Clight. A benefit of
Clight is it has a formal semantics [7]. And so, we employ a
“trick” to more easily analyze C code without requiring extra
effort from the software engineers: we convert from C into
Clight, and then back into C again, via a modified branch of
CompCert.

There are several differences between C and Clight: un-
specified or implementation-defined behavior is made ex-
plicit. For example, assignments only exist as statements
(and not expressions) and integers are fixed sizes (such as
the type int is always 32 bits). We show an example in Fig-
ure 4. Further, the benefit of a clang plugin is our control

FTSCS 22, December 07, 2022, Auckland, New Zealand

int foo(void){
printf("foo");
return 40;

}

int bar(void){
printf("bar");

int main(...){
register int $69;
register int $68;
register int $67;

return 2;
) . $67 = foo();
. . . $68 = bar();
int sum(int a, int b

um €)’ $69 = sum($67,%$68);

return a + b;

3 return $69;
return 0;

int main(...){
return sum(foo(),

bar());

Figure 4. C (left) has unspecified behavior for the order of
evaluation of function arguments; Clight (right) specifies
this.

over the AST of a C program,; this is the perfect place to
annotate the C program with the ACSL we need to build
a correspondence to QSpec. However, the C source input
to QFact is somewhat restricted; we discuss this further in
Sections 3 and 2.8.3.

2.7 QWorkflow

Now that we have outlined the individual parts of Q, we dis-
cuss its usage as a tool. QWorkflow is a collection of scripts
used to coordinate the interaction between the different veri-
fication approaches (e.g. model checking of the state machine
models and Frama-C static analysis of the C implementation).
The input to QWorkflow is a configuration file with path
information for all the different artifacts needed to run the
workflow: requirements documents (Microsoft Word and Vi-
sio files), QSpec file(s) for the corresponding Stateflow model
under analysis, the CTL and LTL properties file(s), and the C
code implementation of the design. These are subsequently
used to run NuSMV on the model generated by QLang and
Frama-C on the C code with ACSL annotations. Each require-
ment in the Word documents has a unique identifier and a
specified labeling convention is used to reference each of the
LTL/CTL properties (which are manually generated). The
Stateflow models are also annotated with similar labels. Both
of these labels are used by QWorkflow to collect the results
obtained with NuSMV and Frama-C and report the status
of each requirement in the original Word document. This
makes coordinating with the many designers feasible and
allows cross-referencing all of the parts of Q.

2.8 Tool Usage

We now describe our usage of existing tools and program-
ming languages.

FTSCS 22, December 07, 2022, Auckland, New Zealand

2.8.1 NuSMV. NuSMV [13] is an open source model check-
ing solver that applies symbolic algorithms [11] based on
binary decision diagrams (BDDs) [10]. It supports both LTL
and CTL model checking. The key limitations with NuSMV
(and with BDD-based model checking in general) are that the
model must have a finite state space and that the so-called
“state-explosion problem” [14] can lead to intractable model
checking problems even when only relatively few compo-
nents are combined in the system to be analyzed. In practice,

(List why this is OK and still allows scalability)

2.8.2 Frama-C. Frama-C is a tool for the analysis of C pro-
grams. There are many different plugins for Frama-C, which
range from simple callgraph visualizations, to abstract inter-
pretation, to deductive provers. We focus on the deductive
provers, which are realized with the Weakest Precondition
(WP) plugin. With WP, the ACSL specifications essentially
consist of pre-conditions to be verified (requires clauses) and
post-conditions to be checked (ensures clauses).

One powerful feature of Frama-C is its support for multiple
provers: all proof obligations are converted to an intermedi-
ate language WhyML and are passed into Why3 [8] (elided
in Figure 1 for simplicity). Why3 then attempts to prove the
given goal using one or several different provers.

For our use of Frama-C, we treat API contracts as ax-
iomatic. While this is an opportunity for specification bugs,
it allows us the necessary separation between the state ma-
chine semantics and the systems-level C and hardware in-
terfacing that does not map nicely to statecharts.

One feature of Frama-C that Q uses heavily is the notion
of ghost states. These allow Frama-C to store variables which
are not used in the C code, but are updated along with some
C function call or statement. Through this, QSpec statecharts
can be aligned with their C implementation. QLang automat-
ically adds these ghost states to the C code, matching them
with the correct QSpec variables.

2.8.3 C Coding Standards and Considerations. It is
worth mentioning the less interesting, but still equally im-
portant, coding considerations to achieve the automatic veri-
fication provided by Q. For one, we must describe a mapping
from Stateflow into C variables. As mentioned previously,
any hardware access (via registers or memory-mapped I/O,
for example), must be separated into separate API function
calls and axiomatized with ACSL. Further restrictions with
our tool are that pure functions in these APIs must also be
annotated with Frama-C annotations. However, for our state
machines we only desire the observable behavior, so relaxing
this restriction is feasible and part of our future work.

Pollard, Armstrong, Bender, Hulette, Mahmood, Morris, Rawlings, Aytac

3 Design

Q decomposes the goal of proving system-level temporal
properties into two steps. The first is to prove that the tem-
poral safety properties hold for system specifications given
as QSpecs, which are hierarchical compositions of state ma-
chines (see Section 2.2). The second is to prove that a given C
program implements (refines) a given component within the
QSpec, called the “program component,” such that temporal
safety properties of the system as a whole are preserved.

As described in Section 2, the first step is completed by
generating a transition relation over the states and variables
of the system-level QSpec, along with initial conditions and
other constraints, and encoding this system as an SMV model.
We use NuSMV’s unbounded checking to show the model
has the desired system level temporal properties.

In this section we focus on how we accomplish the second
step. At a high level, we proceed by automatically generating
ACSL function contracts from the program component, and
then use Frama-C to prove that the C code implements those
contracts. The function contracts are carefully constructed so
as to witness the desired refinement (Section 3.1). Crucially,
we choose our notions of refinement and composition such
that the system composed of the program component and
the rest of the system preserves the temporal properties
established in the first step (see Section 3.2). Taken together,
these steps ensure that temporal safety properties which are
shown to hold for a QSpec system-level specification will
also hold for an implementation of that specification.

3.1 Refinement to C

Q Framework is designed to allow compositional reasoning
about the observable temporal properties of asynchronously
communicating software and hardware components. This
entails unifying two very different sorts of compositionality.
To reason effectively about asynchronously communicating
components, we require a proof relating abstract source and
concrete target states; we call this a refinement, and so require
these proofs of refinement themselves to be compositional
over asynchronous parallel composition. At the same time,
to reason effectively about software components, we need a
logic which is compositional over the sequential composition
of functions and statements, for concrete implementations
(viz. C). In this section we outline some of the key arguments
for soundness of our refinement, which is somewhat similar
to CompCert’s proof of semantics preservation [24], however
our proofis....

3.1.1 Hoare Logic from Transition System Specifica-
tions. Consider a C program fragment f. The behavior of
this fragment is defined by its sequence of observable behav-
iors, and f acts on a program state ProgState, which is a
set of variables and their bindings. Some of these variables
may be unbound; these (open) variables in C are realized as
volatile, which we describe in more detail in this section.

define
sub-
sumg

Q: A Sound Verification Framework for Statecharts & their Implementations

We next provide a definition of partial correctness of a
program fragment f. Provided a specification s, we say s = p
if, provided state s, predicate p holds on that state. And now,
given fragment f and predicates p,q we define a partial
correctness assertion over all program states as:

{p}fiq} = Vs € ProgState. (1)
sEp = (Vs €ProgState. s[f]s" = s Eq),

where [[-] is the predicate transformer semantics for f, or
its nontermination (hence the partial correctness).

Put another way, a proof of {p}f{q} witnesses that any
execution of f, should it terminate, maps the set of states
supporting precondition p, supp(p), to the set of states sup-
porting postcondition g:

supp(p) = {s € ProgState | s = p} € P(ProgState). (2)

Specifically, Frama-C’s WP plugin tries to prove whether
partial correctness assertions {p}f{q} are entailed by their
weakest precondition {WP(q)} f{q}. This Hoare logic is com-
positional only over sequential composition of program frag-
ments.

On the other hand, the abstract specifications of our sys-
tems are labeled transition systems (LTS). We use the typical
definition of LTS as triples P := (Sp, Op, —p) where Sp is
the set of states, Op the set of labels, and —p C Sp X Op X Sp
the transition relation where the label is written above the
arrow. We denote the labels with O to indicate they are the
observables of the system. A trace of P is a sequence of Op
allowed by —p. Given an LTS P, we might be interested in a
simpler LTS Q = (S, Og, —¢) whose behavior subsumes P;
in this case, any LTL temporal property satisfied by P is also
satisfied by Q.

If P subsumes Q, then P is a strict refinement of Q, which
we write as P <gic¢ Q. The motivation here is it is sometimes
easier to prove a temporal property on the simpler model Q
and prove strict refinement. However, a proof of strict refine-
ment requires constructing a simulation relation R C Sp X Sp

preciselsuch that any transition in P corresponds to a transition in
one? Q, with the same label. Along with this simulation relation,

true’

refinement also requires a simulation map from states in the
LTS to states in P, which we denote ¢[g| : Sp — ProgState.
It is also convenient to define the support of the simula-
tion map from (2), which are the set of provable predicates
according to the simulation map R:

@rr] = supp o fig] : Sp — P(ProgState).

By using Frama-C, strict refinement is too strong of a
condition: the Frama-C WP plugin cannot prove partial cor-
rectness for arbitrary program fragments f, but instead only
for functions (this is required for Frama-C’s modularity). But
our simulation relation R, as defined above, only relates the
pre and postconditions and not the intermediate steps the C
program (and in turn, the compiled binary) may take.

FTSCS 22, December 07, 2022, Auckland, New Zealand

More precisely, given a transition p p p’, there may
be any number of intermediate program states which have
been visited by the program fragment f: that is, we must
prove {¢[r](p)}f{e[r)(p’)}. These program states do not
have a corresponding LTS label, so any refinement must also
include the silent transition 7.

Thus, we can only hope to obtain weak refinements wit-
nessed by weak simulation relations, i.e. R C Sp X Sp such
that

P <iear O :=V(p,q) € R,a € Op,p’ € Sp. (3)
p—pp = 3¢ €So.(q 0> ¢ A(p.q) €R)|,

where we concatenate the silent observations 7 to our collec-
tion of observations, and 7* is a composition of an arbitrary
number of transitions under the silent transition.

3.1.2 Observables in Hoare Logic Using Ghost State.
At this point, we cannot yet prove a weak simulation between
LTS and C using the Q Framework, since the Hoare logic we
defined in (1) does not capture any notion of observations.
Suppose our program interacts with its environment through
some memory-mapped input/output (I/O) port or an value
accessed by an asynchronously interrupting function—by
the C standard, such interations should be through variables
declared volatile. The C standard specifies that volatile
variable accesses are observable events, or side effects, and as
such, like termination, must be preserved for any semantics-
preserving transformation.

However, at every sequence point, (semicolon in C) the
value of a volatile variable may be modified by unknown
factors, so the value of a volatile variable upon exit of a func-
tion tells us nothing about the value observed at the time of
the volatile variable access—this is observable behavior of
the function not reflected in program states. The underly-
ing problem is that volatile variables in embedded systems
correspond to open variables and so refinement proofs must
take place in a context.

The solution to this problem is accomplished through
ghost state, whose evolution can be specified through Hoare
logic annotations of functions thanks to how CompCert
renders observable side effects into events [23]. Specifically,
the event type in CompCert is constructed from system
calls, variable loads, variable stores, and annotations. When
compiling C into CompCert’s Clight, volatile accesses are
compiled into system calls.

For example, suppose we have declared a global variable
volatile uint8_t fgetCVal which our program accesses
through the global pointer volatile uint8_t *fgetC. Then
the assignment uint8_t c = *fgetC; gets compiled into
Clight as

$1 = volatile_load_uint8_t_(fgetC);

FTSCS 22, December 07, 2022, Auckland, New Zealand

We give an axiomatic model of the sequence of obser-
vations (obs) at volatile memory location fgetC. Frama-C
annotations are indicated with a comment beginning with
the @ symbol.

/*@ghost
axiomatic model {

int obs_t;

type obs;
logic obs obs_at(integer t);

logic uint8_t fgetCObs(obs 0); } */

We then axiomatize the sequence of observations through

a Hoare triple for volatile_load_uint8_t, with obs_at
representing a sequence of values read from fgetC:

/*@

requires \valid(unsigned char volatile #*v);

requires fgetC == v;

ensures obs_t == \old(obs_t) + 1;

ensures \result \in (0 255);

ensures \result <==>
fgetCObs (obs_at (\old(obs_t)));

*/

uint8_t *volatile_load_uint8_t_(uint8_t =*v);

And so, the predicates from propositions over fgetCObs
are no longer strictly over ProgState, but are now over
ProgState X GhostState.

So far, we have have equipped our LTS Q = (Sp, Og, —0)
with a simulation map from LTS states to predicates over
the ProgState of a C program Pc. That is, with support
(f’[RsQ] : So — P(ProgState). Suppose we are given, in
addition, such a map from specification observations Og to
predicates over GhostState, i.e., taking support, @[ROQ] :
Op — P(GhostState).

With these, we can now generate from —¢ the partial
correctness assertions which could prove Pc <yeak Q. Let
EnvProp be propositions over ProgStatexGhostState. Then

So X Og x Sg 2—p— (EnvProp, EnvProp)

(S, o, S,) = ((p[RsQ](s)s (p[RoQ] A ‘P[RSQ] (S,)) .

Should We call the product of a predicate (envProp) and a pro-

gram location (a PLoc matching clang’s notion of program
location) an execution context:

ExecCtxt = EnvProp X PLoc

and ask of the user, alongside their specification of the ab-
stract model as a labelled transition system, a specification
of Rs, and Ro,, as relations between states and observation
appearing in the abstraction and ExecCtxt. Then the partial
correctness assertion associated with (s, 0,s") € SoxOgpXSp,

where (s,s”) €—0>Q,

(s,0,5")

(vt (o) (sl nofar)

Pollard, Armstrong, Bender, Hulette, Mahmood, Morris, Rawlings, Aytac

(Double-check this. Namely, little s in the middle, last RJ

In this way, we compile from the simulation map, for every
function, the Frama-C annotations. Since we moreover assert
that these are the only behaviors (using the Frama-C anno-
tation complete behaviors for each function, if Fraam-C
succeeds in proving all these Hoare triples, we have obtained
a proof that

0o e b P(So X So)

¢[ROQ]\L C \L@[RSQ]

P (GhostState) ———» P(ProgState X ProgState)
C

That is, the proofs of all the Hoare triples in (4) shows the
ghost state indexed program state transformer semantics
—p,. defined by the Hoare triples given by (¢ Rog 1 PlRs,]),
thought of, itself, as a transition system, witnesses a sim-
ulation, as (gb[ROQ]o —p.) € (=0 OQZ’[RSQ]) amounts to
®).

But how can we think of —p_. as a simulation relation? At
this point, we should remind ourselves that the observations
specified in Figure 3 are predicates, so our map ¢| Rop] isn’t
a map amogst discrete sets of labels, but amongst lattices
of predicates. This extra structure puts some constraints on
—: 0 — P(S X S), namely

a ’ ax ’ iB ’
B=ap—op pop'pop

p Dy Py pop
Thus — o must be a Galois connection from the lattice O to
the lattice P (S X S), and ¢ Ro,,] Must be monotonic for —p..
to inherit this property.

And so, we encourage the user to give Ro, as a rela-
tion between atomic predicates in the specification and arbi-
trary predicates over C program and ghost state. However,
this is extremely restrictive. Already in Figure 3 Line 23,
(= brew 2), is atomic, while the check_brewing predicate
(< brew 2) is not atomic, as (< brew 2) = (< brew 3).
In the Q Framework, we first do a syntactic check on the
given simulation relations to detect whether any specifica-
tion predicates are not atomic. When they fail to be atomic,
we test for implications amongst predicates via Z3, and gen-
erate ACSL side obligations which, if discharged by Frama-C,
show implication of their images along ¢ Rog I» ie.Va,p €
Op. (B = @) = (Plrog 1 () = Plrog 1 (@).

We therefore ask the user specify the simulation relation
with the following data:

1. A mapping between the states of the model and states
of the implementation, a simulation relation, R a subset
of State X ProgState;

2. the behaviors that the state machine performs which
are considered observable, Obs; and

Typechec!

Q: A Sound Verification Framework for Statecharts & their Implementations

3. amapping between observables and termsmap : Og —
EnvProp.

If Frama-C can discharge these side obligations along with
the Hoare logic obligations synthesized from the abstract
specification are true and complete, i.e. that

V(S, 0, SI) S SQ X OQ X So.

(s,s") E—gQ =

fofrr®©} (ofke®) fefar© Adfp)}

then we have shown that the specification weakly simulates
the implementation, i.e. Pc <ywesk Q. We obtain inclusion
of observable traces, although up to the relation amongst
observations given by Ro,,

3.2 Refinement and Composition

In the preceding section, we saw that the separation Hoare
logic for simulation can’t be synthesized without synthe-
sizing the accompanying ghost state which axiomatizes the
behavior of its environment. Specifically, we axiomatized
the behavior of the volatile fgetC as per the C standard,
in which, at a volatile variable, the final store need not be
explicit in the program. We therefore then axiomatized the
behavior of fgetC to reflect the external non-determinism
of its value.

Moreover, volatile reads in C lack any guarantee of fresh-
ness. This means it is possible for the C program to ob-
serve stale values. Such behavior is modeled by the asynchro-
nous composition of components. Given P = (Sp, Op, —p)
and Q = (SQ, Oo, —>Q) P|lQ = (Op U Og, Sp X S, _>P||Q)

@ ¢ where —pjo is the smallest closure of

p.q
?'.q

(defige”

" which states are enabled, the asynchronous composition is

’ a ’
p _>P p q9—049
(24 (04
(p’ q) —>PHasyan (p,’ q) (p’ q) _>P||asyan (p’ q’)
For such a composition, we are interested in an even weaker
notion of refinement. For [|async, the relations given by the

graphs of the projections Ry, , = graph(np o) witness nei-
ther strict nor weak simulation relations, unless

VaEOpUOQ,pESP,QGSQP—O’(PPandq_U’lQq'

The most natural of these, which we sketch out the proof

? of here, is the refinement of TLA specifications. As spec1 is

a stuttering invariant property stipulating, at a given state,

simply the conjunction specL A specR. Moreover, this means
refinements are, up to the existence of traces of hidden vari-
ables and refinement mappings, implications refined <rpa
abstract when refined = 3hiddenVars.abstract. Then
the compositionality of refinement results from the univer-
sal property of conjunction, namely, given a specification
SL A SR implies SL and SR. Fortunately, <weak = =<TLA, SO
we can use the refinement proof from the preceding sec-
tion to reason compositionally about system level properties

FTSCS 22, December 07, 2022, Auckland, New Zealand

of implementations. To this end, we have developed a TLA
backend.
How does this differ between the desired (SMV) back-
end? Can we state in gentle terms why we don’t show
SMV backend here?

Given any fixed collection of observables O, consider the
transition system 1o0(O, {x}, =1,), where the transition sys-

tem is non-deterministic over the alphabet Vo € O. —>01 0=
{*} x {x}. Not coincidentally, our ghost state axiomatization
of I/0, e.g. for fgetC, is of this same type. This transition sys-
tem enjoys the universal property that it is the most (strict,
weak, and dbss) abstract transition system over its alphabet,
that is, V(O, Sp, —p) : LTS.P <, 1o".

Collecting all of the external specification observations
into Ag, and external implementation observations into Ag,.,
we see that, when Frama-C successfully discharges the proof
obligations described in the previous section, we have ob-
tained a proof that C||1g. <714 O||1E,.

By the universal property of || and 1, we have a helpful,
derived inference rule

Q”asynclEA ZTLA C”asynclEc
1£, =114 DA 15~ =714 DEC 1E, 2 15 DA =114 DEL

Q”asyncDA ZTLA Cc”async Ec

sing
?

.For any safety property Pg,fe, we can use a proof of Psure (CalloD4)

to infer (pE‘R]OPsafe(CcHaDC), as

Ca =114 Cc DA Z114 D Psafe (CA”asyncDA)

qorRJoPsafe (CC ”asyncDC)

The proofs of the full QSpec’s temporal properties com-
bined with the proof that the C program refines the program
component together yield a proof of the temporal properties
for the system implementation. There is a subtlety in this
argument, however. The C program is shown to meet its spec-
ification as a sequential program, and the system correctness
properties are correctness as a distributed system.

4 Related Work

Model checking has a long history in formal verification
of software systems [1, 11, 12, 18]. Well-known industrial
uses of model checking gain value with models that are
divorced from implementation [26]. These use-cases often
help write correct code, but in our setting we aim to go one
step further and take invariant properties proven for the
model and ensure they apply to their implementation (e.g.,
in C).

Tools like SLAM [5] have had significant impact in indus-
trial uses by checking for proper integration of device drivers
with the Windows kernel. More broadly, model checking
programs directly is a well studied technique [22]. These

The notation is inspired by the observation that 10 is the terminal object
in the slice category LTS/10

FTSCS 22, December 07, 2022, Auckland, New Zealand

approaches assume the behavior of the larger system is en-
coded soundly in assumptions of their specifications. For
example, in the case of SLAM’s driver verification tool SDV,
they specify a set of API usage rules that can be seen as
approximating environmental behavior and constraints. By
contrast in our approach we use our theory of refinement
(Section 3.1) and assume the composed environment Q to be
fully unbound in its behavior. In practice this means that the
state machine model uses variables that are unbound within
their type and conceptually act as the interface between the
specification and its environment. In C, these are volatile
variables that are used as a communication medium by other
system components and do not have unbounded behavior.
From the perspective of state machines, there has been recent
work verifying properties about only the Simulink models
via SMT [20]. Conversely, our models exist separately from
their implementations, so an important feature of Q Frame-
work is that we not only verify properties of the models, but
also demonstrate a refinement to the implementation in C.

The work most similar to the Q Framework is Trillium [28],
which permits refinement proofs between a higher-order
distributed separation logic (TLA) and an concrete imple-
mentation language (AnerisLang). Trillium has the benefit of
having a fully mechanized proof of correctness in Coq, but its
implementation langauge is not a general purpose program-
ming language. Therefore, the tradeoff of Q Framework is
less formalization (using NuSMV and Frama-C) in exchange
for the flexibility of having C as the concrete implementation
language.

Several works have explicitly aimed to bridge the gap
between state-machine-like specifications and real imple-
mentations. Broadly they have focused on generality, where
it is up to the user to build a simulation proof between the
program and its specification. As a consequence they re-
quire a large amount of user intervention. In the case of
Ironfleet [19] a separate intermediate refinement in the form
of a protocol must be designed and proved. In the case of
DeepSpec, [29] a “linear” specification is designed along with
an intermediate “implementation” specification. The coin-
ductive ITree specifications are infinite state while ours are
infinite-state with finite representation as practical matter
for checking temporal properties against our model. Similar
to Ironfleet, refinement is demonstrated through the interme-
diate specification but here the proof takes place in the Coq
proof assistant and the final refinement to C is demonstrated
using the Hoare logic at the heart of the Verified Software
Toolchain [3].

The foundational nature of proofs in DeepSpec are notable
because semantics underlying VST for C come from the
CompCert compiler and are verified in Coq. As a result the
proofs are foundational and they are carried all the way
down to the point of assembly generation.

By contrast, we have aimed to facilitate automation of
refinement proofs for programs fitting a particular form.

Pollard, Armstrong, Bender, Hulette, Mahmood, Morris, Rawlings, Aytac

With respect to DeepSpec, the key ideas and the architecture
of our tool are such that we can produce VST obligations to
provide similar foundational guarantees via a new back-end
and this is planned as future work.

5 Future Work

The Q framework is a mature enough project that it sees
industrial use-cases at Sandia today. However, it is just one
part in our ultimate goal (similar to the DeepSpec project),
to have “One Q.E.D”—a single proof of correctness, from the
functional (or state-machine) specifications, to the high-level
programming language implementation, to the generated
binary, all the way down to the hardware being executed. To
this end, we wish to extend the Q framework for hardware
verification, instead of treating access to the hardware (or
ISA) as axiomatic in ACSL.

Furthermore, while we can get scalability with the Q
framework, it is not without caveats. As mentioned in Sec-
tion 2.5, flattening models can grow QSpec (and their corre-
sponding SMV) to be too large to check. We are currently
working on adding support within QLang for more efficient
ways of encoding the state machine operators within SMV
and ACSL, while keeping the semantics equivalent. Beyond
this, one manual part of Q Framework is the decomposing
and tracking the assumptions of each interacting compo-
nent. To automate this process, we are investingating circu-
lar assume-guarantee [17] reasoning for the Q Framework,
which would automatically build a set of assumptions re-
quired for compositional model checking of a system, even
when the individual components have mutual dependencies.

As mentioned in Section 3, one limitation of Q is its strict
requirements on the structure of the C implementation and
the ACSL annotations Q expects. However, we are interested
in using the the Verified Software Toolchain’s (VST) [3] sym-
bolic executor to automatically generate the ACSL specifi-
cations to allow more complex functions to be annotated
automatically with ACSL. Lastly, we plan to extend our no-
tion of modularity one step futher: we plan to extend Q to
allow verification of both nested and parallel composition of
state machines. This would further expand the class of state
machines, and corresponding C code, that can be verified.

6 Conclusion

We presented the Q Framework, a verification framework
to verify the correctness of digital control systems. Q works
by linking together state machines (expressed in Stateflow)
with a source code implementation (in C), and proving an
implementation is a refinement of the model and that it
obeys some set of requirements expressed as temporal prop-
erties. This allow us to verify deep temporal properties about
systems and their concrete implementations, provided that
these implementations are written in a restrictive coding
style that matches very closely the Stateflow model. Our

Q: A Sound Verification Framework for Statecharts & their Implementations

team of approximately 10 people works with several small
groups of system designers and software developers for an
embedded system. Q was designed around the idea that high-
consequence embedded control software has complex re-
quirements, and that it is worth significant effort to ensure
the software upholds these requirements.

Acknowledgments

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineer-
ing Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under
contract DE-NA0003525. SAND No. SAND2022-12167 C.

References

[1] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son
Hoang, Farhad Mehta, and Laurent Voisin. 2010. Rodin: an open toolset
for modelling and reasoning in Event-B. STTT 12, 6 (2010), 447-466.
[2] Charles André and Frédéric Mallet. 2009. Specification and Verification
of Time Requirements with CCSL and Esterel. In Proceedings of the
2009 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (Dublin, Ireland) (LCTES "09). Association
for Computing Machinery, New York, NY, USA, 167-176. https://doi.
org/10.1145/1542452.1542475
[3] Andrew W. Appel. 2011. Verified Software Toolchain. In Proceedings of
the 20th European Conference on Programming Languages and Systems
(ESOP/ETAPS (LNCS 6602)). Springer-Verlag, Saarbriicken, Germany,
1-17. http://dl.acm.org/citation.cfm?id=1987211.1987212
[4] Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C.
Pierce, Zhong Shao, Stephanie Weirich, and Steve Zdancewic. 2017.
Position paper: The Science of Deep Specification. In Verified Trustwor-
thy Software Systems (Philosophical Transactions of the Royal Society A).
The Royal Society, London, UK. http://doi.org/10.1098/rsta.2016.0331
[5] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani.
2004. SLAM and Static Driver Verifier: Technology Transfer of For-
mal Methods inside Microsoft. In Integrated Formal Methods, Eerke A.
Boiten, John Derrick, and Graeme Smith (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1-20.
[6] Jim Barnett, Rahul Akolkar, R. J. Auburn, Michael Bodell, Daniel C.
Burnett, Jerry Carter, Scott McGlashan, Torbjorn Lager, Mark Helbing,
Rafah Hosn, T. V. Raman, Klaus Reifenrath, No’am Rosenthal, and Jo-
han Roxendal. 2015. State Chart XML (SCXML): State Machine Notation
for Control Abstraction. Technical Report Version 1.0. WC3: The World
Wide Web Consortium. Available at https://www.w3.org/TR/scxml/.
Sandrine Blazy and Xavier Leroy. 2009. Mechanized Semantics for the
Clight Subset of the C Language. Journal of Automated Reasoning 43
(Oct. 2009), 263-288. Issue 3. https://doi.org/10.1007/s10817-009-9148-
3

[8] Frangois Bobot, Jean-Christophe Filliatre, Claude Marché, and Andrei
Paskevich. 2011. Why3: Shepherd Your Herd of Provers. In Boogie 2011:
First International Workshop on Intermediate Verification Languages.
Wroclaw, Poland, 53-64. https://hal.inria.fr/hal-00790310.

[9] M.C. Browne, E.M. Clarke, and O. Grimberg. 1988. Characterizing
finite Kripke structures in propositional temporal logic. Theoretical
Computer Science 59, 1 (1988), 115-131. https://doi.org/10.1016/0304-
3975(88)90098-9

[10] Randal E. Bryant. 1986. Graph-Based Algorithms for Boolean Function
Manipulation. IEEE Trans. Comput. C-35, 8 (1986), 677-691. https:
//doi.org/10.1109/TC.1986.1676819

—
~
—

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

FTSCS 22, December 07, 2022, Auckland, New Zealand

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.
Dill, and L. J. Hwang. 1992. Symbolic Model Checking: 10%° States
and Beyond. Information and Computation 98 (1992), 142-170. https:
//doi.org/10.1016/0890-5401(92)90017-A

Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan
Merz. 2010. The TLA + Proof System: Building a Heterogeneous
Verification Platform. In Theoretical Aspects of Computing — ICTAC
2010, Ana Cavalcanti, David Deharbe, Marie-Claude Gaudel, and Jim
Woodcock (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 44—
44,

Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. 2002. NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. In Proceedings of the 14th International Conference on
Computer Aided Verification (CAV "02). Springer-Verlag, Berlin, Heidel-
berg, 359-364.

Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith. 2018.
Introduction to Model Checking. In Handbook of Model Checking,
Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem (Eds.). Chapter 1, 1-26. https://doi.org/10.1007/978-3-319-
10575-8_1

E. M. Clarke, D. E. Long, and K. L. McMillan. 1989. Compositional
Model Checking. In Proceedings. Fourth Annual Symposium on Logic in
Computer Science. 353-362. https://doi.org/10.1109/L1CS.1989.39190
Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. 2012. Frama-C. In Software
Engineering and Formal Methods (SFEM (LNCS 7504)), George Elefther-
akis, Mike Hinchey, and Mike Holcombe (Eds.). Springer, Thessaloniki,
Greece, 233-247.

Karam Abd Elkader, Orna Grumberg, Corina S. Pasdreanu, and Sharon
Shoham. 2015. Automated Circular Assume-Guarantee Reasoning. In
FM 2015: Formal Methods, Nikolaj Bjerner and Frank de Boer (Eds.).
Springer International Publishing, Cham, 23-39.

E. Allen Emerson. 2008. The Beginning of Model Checking: A Personal
Perspective. Springer Berlin Heidelberg, Berlin, Heidelberg, 27-45.
https://doi.org/10.1007/978-3-540-69850-0_2

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet:
Proving Practical Distributed Systems Correct. In Proceedings of the
25th Symposium on Operating Systems Principles (Monterey, California)
(SOSP °15). Association for Computing Machinery, New York, NY, USA,
1-17. https://doi.org/10.1145/2815400.2815428

Daisuke Ishii, Takashi Tomita, Toshiaki Aoki, The Quyen Ngo, Thi
Bich Ngoc Do, and Hideaki Takai. 2022. SMT-Based Model Checking
of Industrial Simulink Models. In Formal Methods and Software Engi-
neering, Adrian Riesco and Min Zhang (Eds.). Springer International
Publishing, Cham, 156-172.

Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA. 364 pages.

Rustan Leino. 2010. Dafny: An Automatic Program Veri-
fier for Functional Correctness. In 16th International Confer-
ence, LPAR-16, Dakar, Senegal (16th international conference,
lpar-16, dakar, senegal ed.). Springer Berlin Heidelberg, 348-
370. https://www.microsoft.com/en-us/research/publication/dafny-
automatic-program-verifier-functional-correctness-2/

Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-
mun. ACM 52, 7 (July 2009), 107-115. https://doi.org/10.1145/1538788.
1538814

Xavier Leroy. 2009. A Formally Verified Compiler Back-End. Journal
of Automated Reasoning 43, 4 (Dec. 2009), 363—-446. https://doi.org/
10.1007/s10817-009-9155-4

N. G. Leveson and C. S. Turner. 1993. An investigation of the Therac-25
accidents. Computer 26, 7 (July 1993), 18-41. https://doi.org/10.1109/

https://doi.org/10.1145/1542452.1542475
https://doi.org/10.1145/1542452.1542475
http://dl.acm.org/citation.cfm?id=1987211.1987212
http://doi.org/10.1098/rsta.2016.0331
https://www.w3.org/TR/scxml/
https://doi.org/10.1007/s10817-009-9148-3
https://doi.org/10.1007/s10817-009-9148-3
https://hal.inria.fr/hal-00790310
https://doi.org/10.1016/0304-3975(88)90098-9
https://doi.org/10.1016/0304-3975(88)90098-9
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1109/LICS.1989.39190
https://doi.org/10.1007/978-3-540-69850-0_2
https://doi.org/10.1145/2815400.2815428
https://www.microsoft.com/en-us/research/publication/dafny-automatic-program-verifier-functional-correctness-2/
https://www.microsoft.com/en-us/research/publication/dafny-automatic-program-verifier-functional-correctness-2/
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1109/MC.1993.274940

FTSCS 22, December 07, 2022, Auckland, New Zealand

[26]

[27

—

(28]

MC.1993.274940
Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. 2015. How Amazon Web Services

Uses Formal Methods. Commun. ACM 58, 4 (mar 2015), 66-73. https:

//doi.org/10.1145/2699417

The MathWorks, Inc. 2022. Stateflow: Model and Simulate Decision
Logic Using State Machines and Flow Charts.
//www.mathworks.com/products/stateflow.html.
Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Léon
Gondelman, Abel Nieto, and Lars Birkedal. 2021. Trillium: Unifying

Available at https:

Pollard, Armstrong, Bender, Hulette, Mahmood, Morris, Rawlings, Aytac

[29]

Refinement and Higher-Order Distributed Separation Logic. arXiv.
Available at https://arxiv.org/abs/2109.07863.

Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-
Yao Xia, Lennart Beringer, William Mansky, Benjamin Pierce, and
Steve Zdancewic. 2021. Verifying an HTTP Key-Value Server with
Interaction Trees and VST. In 12th International Conference on Inter-
active Theorem Proving (ITP 2021) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 193), Liron Cohen and Cezary Kaliszyk
(Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Dagstuhl,
Germany, 32:1-32:19. https://doi.org/10.4230/LIPlcs.ITP.2021.32

https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1145/2699417
https://doi.org/10.1145/2699417
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/stateflow.html
https://arxiv.org/abs/2109.07863
https://doi.org/10.4230/LIPIcs.ITP.2021.32

	Abstract
	1 Introduction
	2 Architecture
	2.1 State Machines and Stateflow
	2.2 QSpec
	2.3 QSpeckler
	2.4 LTL and CTL Properties
	2.5 QLang
	2.6 QFact
	2.7 QWorkflow
	2.8 Tool Usage

	3 Design
	3.1 Refinement to C
	3.2 Refinement and Composition

	4 Related Work
	5 Future Work
	6 Conclusion
	Acknowledgments
	References

