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Idea: Explore the possibility of  moving 1.3µm QD lasers to the InP platform
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• State-of-the-art
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• Results

DWELL active region

o Emission wavelength tuning

o Preliminary laser results 

o Why QDs? 

o Why InP vs. GaAs?

o 1.3µm QD lasers on GaAs

o 1.55µm and beyond QD lasers on InP

QW

Barrier

QD

o Tune 1.55µm DWELL 

LIV from InP-based 1.3µm QD laser0.5µm X 0.5µm AFM scan 
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Motivation: QD-based active regions

Joshi et. al (2022); Medium (2019)Low linewidth enhancement

Energy levels: bulk vs QD

• Material properties:

o Quantization in all 3 spatial directions 

o Discrete energy states 

• Device properties:

o Low threshold current 

o High material gain

o Reduced linewidth enhancement factor

o High temperature stability  

o Emission wavelength range 

o Increased tolerance to defects
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State-of-the-art (O-band)

• 1.3µm GaAs-based lasers

o DWELL configuration

o Extremely low threshold 

o High-temperature operation

o Grown on Si substrates Buckley et al. (2012)

Device results from various works 

Norman et al. (2021)

Sellers et al. (2004) Kageyama et al. (2011) Liu et al. (2011)
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State-of-the-art (C-band)

• 1.55µm InP-based lasers

o High temperature stability 

o Linewidth reduction

Buckley et al. (2012)

Device results from Bauer et al. (2021)

o High speed operation possible

o Broadband amplification demonstrated
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Why InP-based at 1.3µm?

• 1.3µm lasers well-established on GaAs substrates

• Material advantages:

o Lower lattice mismatch à lower strain

o Material choices for strain compensation

o Wider gain range 

• Device characteristics:

o Higher modal gain vs. GaAs-based lasers

o Allows for short cavity devices (<1mm)
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Approach

Main goal : Moving emission wavelength of  InAs/InP QDs to 1.3µm

• Starting point

• Approach

InAs/InP Qdashes at 1.55µm and 2µm (PL and AFM)

QW

Barrier

QD

o QD : composition – InAs ; thickness – for 3D growth
o Barrier: Higher bandgap InAlGaAs , lattice-matched to InP
o QW: In(Al)GaAs – can be tuned for emission wavelength

Wan et al. (2018)
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Experiment: PL tuning

• PL structure growth:
o InP oxide desorption: 540℃ for 5 min
o AlInGaAs SCH and barrier compositions from 1.55µm lasers –

grown as digital alloys of  lattice-matched compositions
o Growth temperature : ~490 ℃
o QD/Dash: InAs thickness based on RHEED pattern 
o QW (asymmetric) composition tuned

PL structure

• PL measurement:
o Pump: 635nm (5mW average)
o InGaAs FW detector
o Room-temperature 
o Standard lock-in technique
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PL: Initial results

o In0.6Ga0.4As QW (compressive) : Peak @ 1.75µm
o In0.3Ga0.7As QW (tensile): Peak @ 1.55µm
o Can we keep QW compressive and bring down emission λ? 
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PL: Initial results

o Emission λ blueshifts with increasing bandgap for QW
o Emission efficiency drops & additional peak observed 
o Peak needs to move lower – for detuning 

PL comparison with varying SRL

N
o

rm
a

li
z
e

d
 I

n
te

n
s

it
y

 (
a

.u
)

0

0.2

0.4

0.6

0.8

1

Wavelength (nm)
1,100 1,200 1,300 1,400 1,500 1,600

AlInAs (3.5ML)
Al0.23Ga0.1In0.67As (3.5ML)
Al0.3Ga0.03In0.67As (3.5ML)
Al0.3Ga0.03In0.67As (3ML)

PL comparison with varying QW composition
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PL comparison with varying SRL
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PL: Initial results

o Emission λ at ~1285nm 
o Intensity still LOW and additional peaks exist 

PL comparison with varying QW composition
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PL comparison (GaAs/InP)

N
o

rm
a

li
z
e

d
 I

n
te

n
s

it
y

 (
a

.u
)

0

0.2

0.4

0.6

0.8

1

Wavelength (nm)
1,100 1,200 1,300 1,400 1,500 1,600

InAs/ InP QDash

InAs/ GaAs QDs

PL: Initial results

o Emission λ at ~1285nm 
o Intensity still LOW and additional peaks exist 
o NOT comparable to InAs/GaAs QDs at 1.3µm

X 50
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PL: Optimization results

o Initial design borrowed from 1.55µm structure 
– low carrier confinement for 1.3µm 

o Barrier height increased 

X 50

QW

Barrier

QD

QW

Barrier

QD

QW

QD

Barrier

QW

QD

Barrier

1.55µm design Improved design

1.1eV

1.24eV

Kopf  et al. (1992)

AlInAs/InGaAs

50/50
70/30
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PL & AFM: Optimization results

• Comparison between GaAs & InP-based QDs (5x):

o Intensity – 1:0.45
o Linewidth – 48 meV vs. 97 meV

o Areal density : ~1010/cm2

o Dimensions : 15-20nm wide ; 50-125nm long 

• Structural parameters:
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Preliminary laser design and results

• Device dimensions:

o 50µm X 1mm & 100µm X 1mm
o Both broad-area and ridge-waveguide lasers fabricated

1.45 µm Al0.48In0.52As
n-cladding layer 

n-InP (100) substrate

48 nm n-InAlGaAs grading  
100 nm InAlGaAs SCH 

30 nm p-InAlGaAs barrier

InAs QD/Al0.43In0.57As QW (DWELL)

70 nm InAlGaAs SCH 
48 nm p-InAlGaAs grading  

1.45 µm Al0.48In0.52As
p-cladding layer 

100 nm p-In0.53Ga0.47As contact
100 nm p-InAlGaAs grading  

X 5 

SCH :AlInAs/InGaAs -80/20
Barrier: AlInAs/InGaAs – 70/30

(5th QD w/o barrier on top)
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o I-V profile & turn-on voltage as expected   
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Preliminary laser results

o L-I shows soft turn-on characteristic in both devices (Pulsed - 0.5 microseconds pw and 1ms rep rate )

o Threshold values are extremely HIGH – makes lasing behavior unstable 
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Preliminary laser results (issues)

o Light traces above threshold show peculiar features 
– compared to 1030nm QW laser 

o Cause: heat in active region or presence of  absorptive layer

2.9 A2.6 A Reference (QW laser)
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Conclusions

• InP-based QDs (InAs) tuned to emit at 1.3µm 
• QW composition optimized in a DWELL configuration 

• Band structure and growth conditions partially optimized 

• Preliminary devices fabricated:
• I-V characteristics as expected
• L-I profile shows a soft turn-on with high threshold 
• Light traces reveal odd behavior – may be related to heating of  devices
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Questions?


