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Idea: Explore the possibility of moving 1.3um QD lasers to the InP platform
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Preliminary laser results



Motivation: QD-based active regions

Quantum Dot

Material properties:

Quantization in all 3 spatial directions

Discrete energy states

Conduction
Band

Device properties:

IL.ow threshold current o

High material gain Energy levels: bulk vs QD
Reduced linewidth enhancement factor

High temperature stability

Emission wavelength range

Increased tolerance to defects
Low linewidth enhancement Joshi et. al (2022); Medium (2019)
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State-of-the-art (O-band)

. 2 . (202
* - Norman et al. (2021)

1.3um GaAs-based lasers

InGaks

DWELL configuration
Extremely low threshold {165 mev

High-temperature operation

=10 mey

Grown on Si substrates

'4!33 Am’, *

Sellers et al. (2004) Liu et al. (2011)
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Device results from various works 4



State-of-the-art (C-band)

1.55um InP-based lasers

RWG Laser
896 x 2.25 um? |
Eight QDLs |
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Device results from Bauer et al. (2021)

High temperature stability

Linewidth reduction

High speed operation possible

Broadband amplification demonstrated



Why InP-based at 1.3pym? s

Laboratories

1.3um lasers well-established on GaAs substrates

Material advantages:

Lower lattice mismatch = lower strain
Material choices for strain compensation

Wider gain range

Wavelength (um)
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Device characteristics:

£ =3.23% |
5.8 6.0 6.2
Lattice Constant (A)

Higher modal gain vs. GaAs-based lasers

Allows for short cavity devices (<1mm)
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Approach

Main goal : Moving emission wavelength of InAs/InP QDs to 1.3um

Starting point

Norm. Intensity (a.u)

Intensity (a.u.)

1300 1400 1500 1600 1700 1800 1900 " 1800 1700 1800 1900 2000 2100 2200
Wavelength Wavelength (nm)

InAs/InP Qdashes at 1.55pm and 2pym (PL and AFM)

Approach Barrier

QD : composition — InAs ; thickness — for 3D growth

QW Barrier: Higher bandgap InAlGaAs |, lattice-matched to InP
g gap

QW: In(Al)GaAs —

QD

Wan et al. (2018) 7
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Experiment: PL tuning

* PL structure growth:

o InP oxide desorption: 540°C for 5 min

InGaAs cap— 10nm o AllnGaAs SCH and barrier compositions from 1.55um lasers —

grown as digital alloys of lattice-matched compositions

AllnGaAs barrier —40nm o  Growth temperature : ~490 °C
QD active X 5 o  QD/Dash: InAs thickness based on RHEED pattern
Bottom QW = 1.25nm o QW (asymmetric) composition tuned

DARGSASSERRISORTNN  Qpash - ML

Top QW =6.25nm

InP substrate
* PL measurement:

Pump: 635nm (5mW average)
InGaAs FW detector

Room-temperature

SCH: 60/40 (AlinAs/InGaAs)
Barrier: 50/50 (AllnAs/InGaAs)

PL structure

O O O O

Standard lock-in technique
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PL: Initial results i

InGaAs cap— 10nm
AllnGaAs SCH — 110nm

— Direct Gap AlInGaAs barrier —40nm
--- |Indirect Gap

Room
Temperature

AllnGaAs SCH — 150nm

InP substrate

PL comparison
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PL: Initial results

— Direct Gap
---Indirect Gap

Room
Temperature
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Ing ¢Gag 4AS
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Emission A blueshifts with increasing bandgap for QW

Emission efficiency drops & additional peak observed

Peak needs to move lower — for detuning
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PL: Initial results

— Direct Gap
---Indirect Gap

Room
Temperature

1

Wavelength A (um)

>
)
N
o
w
>
o)
—
()
c
L
Q
©
o)
o
c
©
om

57 58 59 6.0 6.1 6.2 6.3
Lattice Constant a, (Angstroms)

—_
3
©
=<
>
= 0.
(7]
c
Q
=
£
el
Q
N
o
£
1
(=]
=

Emission A at ~1285nm

Intensity still LOW and additional peaks exist
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PL: Initial results
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Emission A at ~1285nm

Intensity still LOW and additional peaks exist
NOT comparable to InAs/GaAs QDs at 1.3um

Wavelength A (um)

InGaAs cap— 10nm

InP substrate

PL comparison (GaAs/InP)
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PL: Optimization results

Barrier
Barﬂ

QW QW

D L. 24eV

QD QD

Qw 0}
Bﬁer
Barrier

1.55pm design Improved design

Initial design borrowed from 1.55um structure
— low carrier confinement for 1.3um

Barrier height increased

Kopf et al. (1992)

Intensity (a.u)

InGaAs cap— 10nm

AllnGaAs barrier —40nm

InP substrate

SCH / Barrier compositions changed

—50/50
—70/30

AllnAs/InGaAs

1000 1100 1200 1300 1400 1500 1600

Wavelength (nm)
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PL & AFM: Optimization results

InAs/GaAs
InAs/InP
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Wavelength (nm)

Comparison between GaAs & InP-based QDs (5x): Structural parameters:

Areal density : ~101°/cm?
Dimensions : 15-20nm wide ; 50-125nm long

14

Intensity — 1:0.45
Linewidth — 48 meV vs. 97 meV



Preliminary laser design and results
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100 nm p-Ing 53Gag 47As contact Device dimensions:

100 nm p-InAlGaAs grading

1.45 pum Alg 45Ino s,As 50um X Imm & 100um X 1mm

p-cladding layer Both broad-area and ridge-waveguide lasers fabricated

48 nm p-InAlGaAs grading

30 nm p-InAlGaAs barrier
X
231N -As QW (DWELL (s*"ab \%/o barrier on top)

# IV Data - 100 um Current (A)

0.12

0.1

48 nm n-InAlGaAs grading

1.45 KHm A|0.48|n0_52AS
n-cladding layer

SCH :AllnAs/InGaAs -80/20
Barrier: AllnAs/InGaAs — 70/30 I-V profile & turn-on voltage as expected

15



Preliminary laser results

L-1 (50pm) bar L-1 (100um) bar
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L-I shows soft turn-on characteristic in both devices (Pulsed - 0.5 microseconds pw and 1ms rep rate )

Threshold values are extremely HIGH — makes lasing behavior unstable

16
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Preliminary laser results (issues)
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Light traces above threshold show peculiar features

— compared to 1030nm QW laser

Magnitude (dBm)

Cause: heat 1n active region or presence of absorptive layer
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Conclusions

InP-based QDs (InAs) tuned to emit at 1.3um

QW composition optimized in a DWELL configuration

Band structure and growth conditions partially optimized

Preliminary devices fabricated:
I-V characteristics as expected

L-I profile shows a soft turn-on with high threshold

Light traces reveal odd behavior — may be related to heating of devices

18



Questions?

InAs/GaAs
InAs/InP
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