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Introduction

• Tablets are a common oral solid dosage form

• Much is understood about the powder 

compaction process

• Decades of manufacturing experience

• Lab-based tools (e.g. compaction simulators)

• Computational tools (e.g. FEM simulation)

• Despite the extensive experience with compaction, 

some issues are still observed in development and 

commercial tableting operations
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Objectives

• Develop a peridynamics-based simulation approach to predict tablet robustness and 

fracture 

• Focus on unloading and ejection stages of the compaction process 

• Predict tablet robustness (modes of tablet breakage) for 

• varying process conditions, 

• tooling geometries, and 

• material properties (as characterized by Drucker-Prager Cap model) 

• Objectives aim to improve predictive capabilities for tablet failure, provide insight into 

breakage modes, and guide improvements to formulation/process.
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Background – What is Peridynamics?
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First paper on peridynamics: Silling SA. Reformulation of elasticity theory for discontinuities and long-range 
forces. Journal of the Mechanics and Physics of Solids. 2000 Jan 1;48(1):175-209.
Reference book: Madenci E, Oterkus E. Peridynamic theory and its applications 2014. Springer, New York, NY.

• A generalization of the standard theory of solid mechanics that allows fracture within its 

basic equations

• Seamlessly models the transition from continuous deformation to fracture.

Metallic glass crack tip
Images: Hofmann et al, 2008

Peridynamic
simulation



Background – Peridynamic Approach

• The standard partial differential equations don’t allow discontinuous such as cracks.

• Integral equations can be applied directly on discontinuities.
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PDEs of standard solid 
mechanics

Bond

Peridynamic integral 
equation

• The material point � interacts directly with neighbors � within its 
horizon (cutoff distance).

• The bond between � and � has a bond force density �(�,�) 
(force/volume2).

• �(�) is the external body force density.

• ℋ is the family of � (material points within the horizon).

• The integral sums up all these forces acting on �.



Background – Peridynamic Material Model

• The material model determines �(�, �) for every � in ℋ, for every possible deformation of ℋ.

• Any material model from the standard theory can be used.

• Bonds can break irreversibly.

• After breakage, a bond cannot carry any tensile load.

• The criterion for bond breakage can be anything you can dream up.

• The simplest criterion is critical bond strain.

• This criterion is used in the tablet simulations described later, but with dependence of the 

critical strain on pressure and solid volume fraction.
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Autonomous Crack Growth

• Bonds break whenever they feel like it.

• When a bond breaks, it becomes more likely that a neighboring bond will also break. 

Broken bond

Crack path

Growing
crack



Peridynamic Material Model for Tablet Breakage

• Bond force is linear in strain until failure.
• Bonds fail when their strain � exceeds a critical strain ��.
• The critical strain depends on:

• Hydrostatic pressure �.
• Solid volume fraction (SDV).

• Parameters are calibrated from diametral compression & axial compression tests.

Bond failure dependence on 
solid volume fraction Bond failure dependence on pressure



Future Workflow Envisioned

• Material-sparing, predictive approach to guide tablet development

• More responsive troubleshooting of compaction issues

• The performance of each tooling iteration can be assessed in silico
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Calibration Inputs

• Formulation

• 60% Acetaminophen (APAP)

• 39% Avicel PH102 (MCC)

• 1% Silicon Dioxide MP5

• Geometry

• 10 mm diameter flat-faced tooling

• Straight wall die

• Process Conditions – Compacts for Axial Compression Testing

• Fill weights: ~300 mg

• Compaction pressures: ~200 MPa

• Thickness: ~3.50 mm (fixed)

• Process Conditions – Compacts for Diametric Compression Testing

• Fill weights: ~750 mg

• Compaction pressures: ~230 MPa

• Thickness: ~7.7 mm (fixed)

Formulation
(composition, 

material 
properties), 
Geometry

(tooling size/shape, 
die taper, etc.)

Process
(compaction speed, 

dwell time, 
unloading speed) 

Resulting Solid Fractions:
In-die (SDV): 0.97
Out-of-die: 0.86
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Resulting Solid Fractions:
In-die (SDV): 0.97
Out-of-die: 0.89



Fette 2090i 
Tablet Press

Compaction Simulation

Compaction 
Simulation
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• Fette 2090i tablet press was simulated using a Huxley-Bertram compaction simulator
• All tablets produced in this study used a similar press profile with only changes in main 

compression gaps – turret speed and dwell time were the same for all tablets 
produced
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Compaction Simulation for DPC Model Calibration

Diametral and Simple Compression Strength Tests 
 Two tests per density level

Fully Instrumented Die Compaction Experiments  
 Only one experiment required for all densities

zz

rr

Die Compaction
• Describes the limit to  

elastic deformation 

• One curve per relative 
density (denser=stronger)

• Calibrated easily by press 
simulator experiments
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Compaction Simulation – DPC Shear Failure Surface Calibration
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• Following Cunningham, et al., (2004) and Han, et al., (2008)



Compaction Simulation – DPC Cap Surface Calibration
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• Following Cunningham, et al., (2004) and Han, et al., (2008)



Calibration Experiments Axial & 
Diametric 

Compression 
Testing
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Axial Compression Diametric Compression

Breaking
Force = 

2150-2450 N

Breaking
Force =
92-113 N



FEM Simulation

• FEM simulations of powder compression

• The final compressed, in-die state becomes the input to the peridynamics simulation

FEM Simulation
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Peridynamics Simulation – Overview

• Inputs for PD simulation

• DPC material model parameters from compaction simulation

• In-die tablet stress and solid fraction distribution from FEM

• Compression conditions as desired

• PD simulates same process as used in the experiments: 

• (1) Ejection of tablet from die

• (2) Axial or diametric compression test
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Peridynamics Simulation – Axial Compression

• Simulated mechanical testing (SDV ≈ 0.97)

PD Simulation 
of Ejection and 

Axial/Diam. 
Compression
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Peridynamics Simulation – Diametric Compression

• Simulated mechanical testing (SDV ≈ 0.97)

PD Simulation 
of Ejection and 

Axial/Diam. 
Compression
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Drucker-Prager failure model during ejection

Materials

Start of damage Final damage

Solid density at 
peak compression

Ejection of a pharmaceutical tablet from a rotary press

Pressure

Von Mises stress

Failure surface

Tablet “capping” failure
Image: merlin-pc.com



Workflow for Model Development
Lab-based

Experiments
Computational

Calibration

Prediction 
of tablet 

breakage/ 
defects on 

ejection

Formulation
(60% APAP)
Geometry

(oblong tooling)
Process

(Simulating Fette
2090i @ 40 RPM, 

15.7 ms dwell) 

FEM Simulation
Peridynamics 
Simulation of 

Ejection

Observations 
of tablet 

breakage/ 
defects on 

ejection

Validation

DPC model 
parameters

In-die tablet stress and 
density distributions

Formulation
(60% APAP)

Geometry
(flat-faced tooling)

Process
(Simulating Fette
2090i @ 40 RPM, 

15.7 ms dwell) 

FEM Simulation

PD Simulation 
of Ejection and 

Axial/Diam. 
Compression

Compacts 
for physical 

testing

Compaction 
Simulation

Axial & 
Diametric 

Compression 
Testing Stress-strain profiles for 

calibration of PD model

Iterate/ 
optimize until 

suitable 
agreement

Formulation-specific 
PD model parameters

Prediction of 
tablet 

ejection and 
compression 

tests

Tablet Press 
(or Compaction 

Simulation)

23



Validation Inputs

• Formulation [same as before]

• 60% Acetaminophen (APAP)

• 39% Avicel PH102 (MCC)

• 1% Silicon Dioxide MP5

• Geometry [different tablet shape]

• 10 mm x 17.3 mm oblong tooling

• Straight wall die

• Process Conditions [different]

• Fill weight: ~900 mg

• Compaction pressure: ~200 MPa

• Thickness: ~6.5 mm

Formulation
(60% APAP)
Geometry

(oblong tooling)
Process
(baseline 

compaction 
conditions) 
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FEM Simulation

• FEM simulations of the compaction (only) of the oblong tablet

• DPC material model parameters as before FEM Simulation
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Peridynamics Simulation of Ejection
Peridynamics 
Simulation of 

Ejection
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Initial SDV

0.91

0.975

Initial pressure

200MPa

100MPa

• The PD simulation of ejection is 
initialized from an Abaqus simulation of 
compression.

• The initial pressure and solid fraction 
vary significantly with position.



Experimental Observations – Oblong Tablet

• Post-ejection mCT

• Significant damage occurs during ejection

Tablet Press 
(or Compaction 

Simulation)
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Peridynamics Simulation Prediction of Ejection

�

Tablet

Damage

Tablet and die

• For this tablet, the ejection simulation 
predicts a complete fracture and additional 
internal damage.

• Drucker-Prager condition is used as a 
nucleation condition for damage.

• Fracture surface is rough.
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Fragment
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Experimental Observations – Oblong Tablet 

• Mechanical Testing

Tablet Press 
(or Compaction 

Simulation)
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Breaking force = ~53 N
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Mechanical Testing Peridynamics Simulation Prediction

Start of diametral compression
Colors show damage

Post-failure
Colors show damage
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Summary & Future Work

• The use of peridynamics for prediction of tablet breakage looks promising

• Material-sparing, predictive approach to guide tablet development and troubleshooting

• Presented a general workflow for calibration and validation

• Quantitative agreement on breaking force

• Qualitative agreement on damage / breakage pattern

• Working on refinements for improved predictions
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Start of Damage Capping

Good agreement with experimental 
observations of Wu et al. (2008).Peridynamics prediction of tablet capping





Drucker-Prager failure model during ejection

Materials

Start of damage Final damage

Solid density at 
peak compression

Ejection of a pharmaceutical tablet from a rotary press

Pressure

Von Mises stress

Failure surface

Tablet “capping” failure
Image: merlin-pc.com



Fun applications

Unstable crack path in a 
polyethylene membrane

VIDEOS

Peeling of tape

Grinding
(includes friction in short-range forces)



Mechanics Models for Powders in terms of Continuum Mechanics

Pressure Dependence of Mechanical Response
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Tablet Geometry
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