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Introduction

* Tablets are a common oral solid dosage form

* Much is understood about the powder
compaction process

» Decades of manufacturing experience
 Lab-based tools (e.g. compaction simulators)

» Computational tools (e.g. FEM simulation)

» Despite the extensive experience with compaction,
some issues are still observed in development and
commercial tableting operations

Picking (Red) / Sticking (Blue) Capping Lamination Chipping Erosion

Simmons and Gierer, (2011)  Wu et al., (2007)  Anuar and Briscoe, (2010) Wu et al., (2007) Sinka et al., (2004)



Objectives
» Develop a peridynamics-based simulation approach to predict tablet robustness and
fracture

* Focus on unloading and ejection stages of the compaction process

* Predict tablet robustness (modes of tablet breakage) for
* varying process conditions,
* tooling geometries, and
» material properties (as characterized by Drucker-Prager Cap model)

» Objectives aim to improve predictive capabilities for tablet failure, provide insight into
breakage modes, and guide improvements to formulation/process.
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Background — What is Peridynamics?

* A generalization of the standard theory of solid mechanics that allows fracture within its
basic equations

» Seamlessly models the transition from continuous deformation to fracture.

Peridynamic

simulation Metallic glass crack tip
Images: Hofmann et al, 2008

First paper on peridynamics: Silling SA. Reformulation of elasticity theory for discontinuities and long-range
forces. Journal of the Mechanics and Physics of Solids. 2000 Jan 1;48(1):175-209.
Reference book: Madenci E, Oterkus E. Peridynamic theory and its applications 2014. Springer, New York, NY.
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Background — Peridynamic Approach

« The standard partial differential equations don'’t allow discontinuous such as cracks.

* Integral equations can be applied directly on discontinuities.
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The material point x interacts directly with neighbors q within its
horizon (cutoff distance).

The bond between x and q has a bond force density f(q,x)
(force/volume?2).

b(x) is the external body force density.
H is the family of x (material points within the horizon).
The integral sums up all these forces acting on x. 5




Background — Peridynamic Material Model

* The material model determines f(q, X) for every q in H, for every possible deformation of H .

* Any material model from the standard theory can be used.

Crack Unbroken bonds

\ x f(q X)/
O

T \
* Bonds can break irreversibly.

* After breakage, a bond cannot carry any tensile load.
* The criterion for bond breakage can be anything you can dream up. 6

* The simplest criterion is critical bond strain.

* This criterion is used in the tablet simulations described later, but with dependence of the

critical strain on pressure and solid volume fraction.

obbvie @] 6



Autonomous Crack Growth

* Bonds break whenever they feel like it.

« When a bond breaks, it becomes more likely that a neighboring bond will also break.

P s Growing
Ceceececceceecesseseecescesencas crack
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Peridynamic Material Model for Tablet Breakage

Bond force is linear in strain until failure.
Bonds fail when their strain € exceeds a critical strain €.
The critical strain depends on:

* Hydrostatic pressure P.
* Solid volume fraction (SDV).

Critical bond
strain

i

b

Critical bond ,
strain

0.0022

Parameters are calibrated from diametral compression & axial compression tests.

Bond failure
in tension

N\

Slope = 8.5E-5/MPa

26

0.7 1.0

» Pressure (MPa)

«—__ Bond failure in
compression

Bond failure dependence on
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Future Workflow Envisioned

Computational

INPUTS

Formulation
(composition,
material
properties),
Geometry
(tooling size/shape,
die taper, etc.)

Process DPC model In-die tablet

OUTPUTS

Prediction

_ _ Peridynamics of tablet
FEM Simulation " Simulation »‘ breakage/
defects on

ejection

\

1 !'1 I |||'

o el i parameters stress and
. ' density
unloading speed) distributions

» Material-sparing, predictive approach to guide tablet development

* More responsive troubleshooting of compaction issues

» The performance of each tooling iteration can be assessed in silico
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Workflow for Model Development

Computational

o

Calibration

In-die tablet stress and

density distributions

Prediction of

DPC model
parameters

Formulation
(60% APAP)

FEM Simulation

PD Simulation
of Ejection and
Axial/Diam.
Compression

tablet
ejection and
compression
tests

b

)|

Geometry
(flat-faced tooling)
Process
(Simulating Fette
2090i @ 40 RPM,
15.7 ms dwell)

Compacts
for physical
testing

Iterate/
optimize until
suitable
agreement

Stress-strain profiles for
calibration of PD model
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Formulation-specific
PD material model
parameters
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Workflow for Model Development

Computational

L

Calibration

In-die tablet stress and
density distributions

DPC model
parameters

Formulation
(60% APAP)

FEM Simulation

PD Simulation
of Ejection and
Axial/Diam.
Compression

)|

Prediction of
tablet
ejection and
compression

tests

b

Geometry
(flat-faced tooling)
Process
(Simulating Fette
2090i @ 40 RPM,
15.7 ms dwell)

Compacts
for physical
testing

Stress-strain profiles for
calibration of PD model

optimize until

agreement

Iterate/

suitable

PD.model parameters

_—

o

Validation

Formulation
(60% APAP)

Peridynamics
Simulation of
Ejection

Prediction
of tablet
breakage/
defects on

Geometry
(oblong tooling)
Process
(Simulating Fette
2090i @ 40 RPM,
15.7 ms dwell)

ejection

Observations
of tablet
breakage/
defects on

ejection 11




Calibration Inputs

* Formulation

* 60% Acetaminophen (APAP)
* 39% Avicel PH102 (MCC)
* 1% Silicon Dioxide MP5

» Geometry

* 10 mm diameter flat-faced tooling

« Straight wall die

» Process Conditions — Compacts for Axial Compression Testing
Resulting Solid Fractions:

* Fill weights: ~300 mg
« Compaction pressures: ~200 MPa
 Thickness: ~3.50 mm (fixed)

* Fill weights: ~750 mg
» Compaction pressures: ~230 MPa
* Thickness: ~7.7 mm (fixed)
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In-die (SDV):
Out-of-die:

Process Conditions — Compacts for Diametric Compression Testing

Formulation
(composition,
material
properties),
Geometry
(tooling size/shape,
die taper, etc.)
Process
(compaction speed,
dwell time,
unloading speed)

0.97
0.86

Resulting Solid Fractions:

In-die (SDV):
Out-of-die:

0.97
0.89
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Compaction Simulation

Example Fette 2090i Press Profile

10
Turret Speed =40 rpm
5 Dwell Time = 15.7 ms
NO PRE-COMPRESSION
’E\ Q) Feccccccccccccccccccccccccccccaa % .........................
é . ~—
(2]
s 5
:'i)
5
= -10
é 15 —Upper Punch Position
——Lower Punch Position
-20
0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

« Fette 2090i tablet press was simulated using a Huxley-Bertram compaction simulator

» All tablets produced in this study used a similar press profile with only changes in main
compression gaps — turret speed and dwell time were the same for all tablets
produced
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Compaction Simulation for DPC Model Calibration

Die Compaction
o * Describes the limit to

zz

Simple
compression

Diametral elastic deformation
compression Eé

* One curve per relative

A $ density (denser=stronger)
q » Calibrated easily by press
Density simulator experiments
¥ increase
>
pP

ﬂ Diametral and Simple Compression Strength Tests
s Two tests per density level

9 Fully Instrumented Die Compaction Experiments
% Only one experiment required for all densities
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Compaction Simulation — DPC Shear Failure Surface Calibration

* Following Cunningham, et al., (2004) and Han, et al., (2008)
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Compaction Simulation — DPC Cap Surface Calibration

* Following Cunningham, et al., (2004) and Han, et al., (2008)
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Calibration Experiments

Force (N)
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1500 -
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500 -

Axial Compression

Breaking
Force =
| 2150-2450 N

———

500 1000 1500
Displacement (mm)

Force (N)

120
100 -
80 |
60
40 |

20 -

Diametric Compression

Breaking
Force =
92-113 N

/

N

50

100

Displacement (mm)

150
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FEM Simulation

. . . FEM Simulation
* FEM simulations of powder compression

 The final compressed, in-die state becomes the input to the peridynamics simulation

| N R [erg—
WOWOWO® Y

Solid
Fraction




Peridynamics Simulation — Overview PD Simulation
of Ejection and
. . Axial/Diam.

* Inputs for PD simulation Compression

* DPC material model parameters from compaction simulation
* In-die tablet stress and solid fraction distribution from FEM
« Compression conditions as desired
* PD simulates same process as used in the experiments:
* (1) Ejection of tablet from die

* (2) Axial or diametric compression test
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Peridynamics Simulation — Axial Compression PD Simulation

of Ejection and
Axial/Diam.

» Simulated mechanical testing (SDV =~ 0.97) Compression

obbvie

Initial State Start of failure
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Peridynamics Simulation — Diametric Compression PD Simulation

of Ejection and
Axial/Diam.
« Simulated mechanical testing (SDV = 0.97) Compression

L

|
£ X

Color denotes bond breakage

1.8
1.6
1.4
1.2

0.8 —— Experimental
06 —PD Simulation

0.4

Diametrical Strength [MPa]

0.2

. 0 0.002  0.004  0.006  0.008 0.01 0.012  0.014  0.016
abbvie

Strain [-]



Drucker-Prager failure model during ejection

Ejection of a pharmaceutical tablet from a rotary press

Von Mises stress
A

Failure surface

- >

»

Pressure Solid density at
peak compression ' Materials

Tablet “capping” failure
Image: merlin-pc.com

Start of damage . [ Final damage
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Workflow for Model Development

Computational

L

Calibration

In-die tablet stress and
density distributions

DPC model
parameters

Formulation
(60% APAP)

FEM Simulation

PD Simulation
of Ejection and
Axial/Diam.
Compression

)|

Prediction of
tablet
ejection and
compression

tests

b

Geometry
(flat-faced tooling)
Process
(Simulating Fette
2090i @ 40 RPM,
15.7 ms dwell)

Compacts
for physical
testing

Stress-strain profiles for
calibration of PD model

optimize until

agreement

Iterate/

suitable

PD.model parameters

_—

o

Validation

Formulation
(60% APAP)

Peridynamics
Simulation of
Ejection

Prediction
of tablet
breakage/
defects on

Geometry
(oblong tooling)
Process
(Simulating Fette
2090i @ 40 RPM,
15.7 ms dwell)

ejection

Observations
of tablet
breakage/
defects on

ejection 23




Validation Inputs

Formulation

* Formulation [same as before] (60% APAP)
Geometry

* 60% Acetaminophen (APAP) (oblong tooling)

Process

* 39% Avicel PH102 (MCC) (baseline

. o compaction

° 10/0 Slllcon Dioxide MP5 Conditions)

-

» Geometry [different tablet shape]

* 10 mm x 17.3 mm oblong tooling

0.3406 [865] | L R1.2449 [R3162]
o8 [1730)
rmm (R4 )

RO23%60 [RS.9]

« Straight wall die

* Process Conditions [different]
* Fill weight: ~900 mg
» Compaction pressure: ~200 MPa

e Thickness: ~6.5 mm
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FEM Simulation

* FEM simulations of the compaction (only) of the oblong tablet

« DPC material model parameters as before S Bl

SOViL

(Avg: 75%)
+9.868e-01
+9.800e-01
+9.732e-01
+9.665¢-01
+9.597e-01
+9.52%e-01
+9.461e-01
+9.393e-01
+9.326e-01
+9.258e-01
+9.190e-01
+9.122¢-01
+9.055¢-01

0000000000000
[jeisiolo)ols]s]olsio]s)o]
[aisisisjslelsislalsieinle]

=, Mises

(Avg: 75%)
+2.853e+02
+2.644e+02
+2.435e+02
+2.226e+02
+2.016e+02
+1.807e+02
+1.598e+02
+1.389e+02
+1.179e+02
+9.702e+01
+7.609e+01
+5.517e+01
+3.424e+01
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Peridynamics Simulation of Ejection

sOvi

(Avg: 75%)
+9.868e-01
+9.800e-01
+9.732e-01
+9.665e-01
+9.597e-01
+9.529e-01
+9.461e-01
+9.393e-01
+9.326e-01
+9.258e-01
+3.190e-01
+9.122¢-01
+3.055e-01

Peridynamics
Simulation of
Ejection

200MPa

100MPa

Initial pressure

» The PD simulation of ejection is
initialized from an Abaqus simulation of
compression.

» The initial pressure and solid fraction
vary significantly with position.
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Experimental Observations — Oblong Tablet

* Post-ejection uCT

« Significant damage occurs during ejection

10.0
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Peridynamics Simulation Prediction of Ejection

Tablet and die

||||n|mmlmn!fflll'l um!iﬁﬁfﬂmfm{ﬂl F rag men t

“\m\\lﬁlummuunmmi'.,.m

Fracture surface

Tablet B Displacement Damage Colors show SDV

Yl g8 - o
or this tablet, the ejection simulation
predicts a complete fracture and additional
RENMEE internal damage.
Drucker-Prager condition is used as a
nucleation condition for damage.

abbvie Fracture surface is rough.




Experimental Observations — Oblong Tablet

* Mechanical Testing

60

Breaking force = ~53 N

50 |
40 |-

30 -

Force (N)

20 ©

10 -

0 50 100 150 200

obbvie Displacement (mm) 29



Mechanical Testing Peridynamics Simulation Prediction

Start of diametral compression Post-failure
Colors show damage Colors show damage

60

50 — Experimental . .
— 40 —PD Simulation * The post-ejection tablet model,
Z . . .
o 30 including damage, is then
©® . .
350 subjected to compression.

10 ) )

0 * Failure load is ~52 N.

0 0.05 0.1 0.15 0.2 0.25 0.3
Platen Displacement [mm]

30



Summary & Future Work

» The use of peridynamics for prediction of tablet breakage looks promising

« Material-sparing, predictive approach to guide tablet development and troubleshooting
* Presented a general workflow for calibration and validation

* Quantitative agreement on breaking force

* Qualitative agreement on damage / breakage pattern

» Working on refinements for improved predictions

Good agreement with experimental
Peridynamics prediction of tablet capping observations of Wu et al. (2008).

ST
g
04 5

Capping

— 00e400
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Drucker-Prager failure model during ejection

Ejection of a pharmaceutical tablet from a rotary press

Von Mises stress
A

Solid density at
Failure surface f peak compression : Vel

- >

»

Pressure

Final damage

Tablet “capping” failure
Image: merlin-pc.com
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Fun applications

VIDEOS

Peeling of tape
Grinding
(includes friction in short-range forces)

Unstable crack path in a
polyethylene membrane

Early high speed photograph by Harold Edgerton
(MIT collection)
EMU model of a balloon penetrated http://mit.edu/6.933/www/Fall2000/edgerton/edgerton.ppt

by a fragment

obbvie



Mechanics Models for Powders in terms of Continuum Mechanics

Pressure Dependence of Mechanical Response
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Tablet Geometry
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