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The importance of spike timing

Structure in network connectivity drives spike-timing patterns
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Yin-Yang Dataset

Spatio-temporally encoded, 3-class dataset developed for research on biologically 
plausible error backpropagation

3

-
Spike Encoding:
• Bias Neuron : 0
• x-coordinate : 𝑥 𝑡!"# , 1 − 𝑥 𝑡!"#
• y-coordinate : 𝑦 𝑡!"# , 1 − 𝑦 𝑡!"#



EventProp for Training SNNs

Derives an exact gradient across event-based neuron models using the adjoint method and 
partial-derivative jumps
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For spike-based loss (e.g. time-to-
spike), this is computed as:



Simple Feedforward Network with Delays

We implement a delay matrix for indexing during the forward and backward passes
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𝐷45 = 𝑑 ∈ (1,10)

𝑇6,45 = min(0, 𝑡 − 𝐷45)

𝑇8,45 = max(𝑇_max, 𝑡 + 𝐷45)

Delay Matrix (per layer)

Updates to the forward time-evolution:

𝐼50 = 𝐼5/ +𝑊5𝑒),1!,#

Updates to the backward gradient jump:
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Forward and backward temporal indices

As contrasted with typical DL-based SNN 
formulations which have uniform, single-
time-step delays between layers



SNN Training Results6

We sampled the Yin-Yang dataset:
- 5000 times for training
- 1000 times for testing

We used stochastic gradient 
descent (SGD) optimization with a 
simple learning rate scheduler

We trained for 40 epochs with
shuffled mini-baches of 100

Layer weights are distributed qualitatively differently



SNN Classification Results7



Spike Dropout in Inference8 Classification plots (0.15 top, 0.25 bottom)



Summary and Takeaways

• Varied connection delays are a notable architectural difference between more 
biological SNNs (e.g. reservoirs) compared to their artificial counterparts (e.g. layers)
• Learning rules such as STDP may be taking advantage of varied delays at a network level
• Computationally, varied delays result in differentially evaluated upstream spiking activity

• We extend ANN/DL-based methods (EventProp) to compute gradients through varied 
delays by introducing a delay matrix and forward/backward temporal indices
• We perform experiments on a simple temporal classification task (Yin-Yang dataset)
• We found that delays result in improvements in training (e.g. faster learning, robustness)

• Future work will be required in exploring the hyperparameter and architecture space
• What determines the relationship between connection delays and the input space?
• Can we start to merge learning rules? (e.g. STDP + STP + BackProp)
• Are there additional mechanisms to support training? (e.g. background spiking activity)

• Current tools are typically for either biological SNNs or DL/ANNs, but not both
• Implementation of connection delays is suboptimal with tools like PyTorch
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