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> | The importance of spike timing

Structure in network connectivity drives spike-timing patterns
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;s 1Yin-Yang Dataset

Spatio-temporally encoded, 3-class dataset developed for research on biologically
plausible error backpropagation

Spike Encoding:

« Bias Neuron: 0

o Xx-coordinate: x t,gr, (1 —X) thax

Yin-Yang Dataset

1.01 g, « y-coordinate: ytnax, (1 =) tmax
Spike Input
>0.51 9 @ I
£
> E 2 I
- |
= 0 I
0.0 | | |
0.0 0.5 1.0 0 10 20 30
X Time (ms)



+ | EventProp for Training SNNs

Derives an exact gradient across event-based neuron models using the adjoint method and
partial-derivative jumps
EventProp: Backpropagation for Leaky Integrate-and-Fire Neurons
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5 ‘ Simple Feedforward Network with Delays
We implement a delay matrix for indexing during the forward and backward passes

Forward and backward temporal indices

Tf,ij = min(O, t — DU)

Tp;j = max(T_max, t + D;;)

Updates to the forward time-evolution:

Delay Matrix (per layer) IF =1+ Wienr, ;

D::=d 1,10 i i
ij € (1,10) Updates to the backward gradient jump:

As contrasted with typical DL-based SNN 1 S (W_T T )
formulations which have uniform, single- ( Vl)n(k) ‘ ( VT "Tb'l)
time-step delays between layers
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s I SNN Training Results
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Layer weights are distributed qualitatively differently
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- 5000 times for training

- 1000 times for testing

We used stochastic gradient
descent (SGD) optimization with a
simple learning rate scheduler

We trained for 40 epochs with
shuffled mini-baches of 100

We sampled the Yin-Yang dataset: |




Uniform Delay Prediction
7 1 SNN Classification Results 1.0

Simple Classification on Yin-Yang Dataset

e B P — >0.5_
90/ | d»,," '\/““
/V, :
LA 4
80 AN o vf" -
Vo o ' \, 0.0 . |
. [ 0.0 0.5 1.0
' X
g70) 1[0 | -
S5 - Varied Delay Prediction
S /4 1.0/
60
3‘.
50 —e— varied delay - train o,
2 >“05' ....?,
—— varied delay - test o
A —e— uniform delay - train d
—e— uniform delay - test
0 5 10 15 20 25 30 35 40 565
Epoch e

.' 1.0
x |



¢ ‘ Splke Dropout in Inference Classification plots (0.15 top, 0.25 bottom) m
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o I Summary and Takeaways

Varied connection delays are a notable architectural difference between more
biological SNNs (e.g. reservoirs) compared to their artificial counterparts (e.g. layers)

« Learning rules such as STDP may be taking advantage of varied delays at a network level
- Computationally, varied delays result in differentially evaluated upstream spiking activity

We extend ANN/DL-based methods (EventProp) to compute gradients through varied
delays by introducing a delay matrix and forward/backward temporal indices

«  We perform experiments on a simple temporal classification task (Yin-Yang dataset)
«  We found that delays result in improvements in training (e.g. faster learning, robustness)

Future work will be required in exploring the hyperparameter and architecture space
«  What determines the relationship between connection delays and the input space?

« Can we start to merge learning rules? (e.g. STDP + STP + BackProp)
* Are there additional mechanisms to support training? (e.g. background spiking activity)

Current tools are typically for either biological SNNs or DL/ANNSs, but not both
« Implementation of connection delays is suboptimal with tools like PyTorch
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