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When using leaky integrate and fire neurons and assuming neurons are attempting to predict the
precise timing of post-synaptic neurons:

The plasticity rules derived from e-prop look similar to standard STDP curves

These plasticity rules can learn sequences

We suggest that STDP not only optimizes networks for prediction but does so by preforming credit
assignment though time via an algorithm akin to e-prop.
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Backpropagation through time with
Eligibility Traces

Eligibility propagation (e-prop) is equivalent to
BPTT.

Unlike BPTT, e-prop does not store
computational graph through time.

Instead, only stores local eligibility traces. .
= E traces store part of the global loss gradient oo

describing network dynamics through time.
= Allows for online training
= More bio-plausible
= Less memory

Computation steps

Bellec et al., 2020

Eligibility trace (e_ij) stored for each synapse ij,
and computed forward in time allowing for
online updates (partially) equivalent to BPTT
when combined with learning signal L.



Standard STDP Formulation
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Local Loss Function

Objective: Presynaptic neuron is trying to predict the

spike of the post synaptic neuron

Loss
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L : Loss

|
¢ : index of presynaptic neuron ‘
7 : index of postsynaptic neuron
t : time
z : neuron spike (0 or 1)
h : membrane potential of neuron
O : Step/spike sampling function
W, : synaptic weight from i to j
€ : error |

b : placeholder for all of the terms in h I
that do not involve W



| Derivation of pSTDP from Neuron Model 1

Eligibility Vector:
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t: timestep

z: neuron spikes

W: synaptic weight matrix
a: decay rate

h: membrane potential

p-STDP (Nrn Model 1)
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7 1 pSTDP1 rule can learn sequences
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| Derivation of pSTDP from Neuron Model 2

t: timestep

Neuron Model z: neuron spikes

W: synaptic weight matrix
Rttt = aht 4+ Wa' — (ah® + Wat)z! yhap ®

a: decay rate

Eligibility Vectors

h: membrane potential

aH—l _ Zt—l—l i o:at v: double trace
p-STDP (Nrm Model 2)
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o 1 pSTDP2 can learn target time in delayed prediction task
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Figure 3: Spike raster for one input-output pair in the delayed spike prediction task. Here we see the
network learned to produce the target spike at the desired time by propagating immediately generated
spikes in the target and neighboring neuron, which combined signals to produce the target spike at
the desired time.



Learning rules derived via eligibility propagation and a predictive coding loss function
* Resemble standard STDP rules

« (Can learning spiking sequences with delays

Pre synaptic neurons are trying to predict the behavior of postsynaptic neurons at future
timesteps

We suggest that STDP not only optimizes synapses for prediction, but does so by preforming
credit assignment though time using something akin to eligibility propagation.
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