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Dry Storage of Spent Nuclear Fuel and

Potential for SCC

Vertical and Horizontal Systems

* Welded stainless steel canister shielded with
concrete or concrete/steel enclosure. Passively

cooled by advective air flow
*  Ambient air contains dust that will accumulate on canister

*  Dust contains salts that will eventually deliquesce in humid air

Vertical Horizontal
Configuration Configuration
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Vent
Overpack
SS Canister
Overpack:+
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Inlet Vent -@

Resulting concentrated brines may cause
localized corrosion on the canister

*  With sufficient stress, corrosion may evolve
into stress corrosion cracks (SCCs)
— Canister welds produce high residual stresses

— SCCs initiating in weld regions could penetrate through the
canister wall

Sea-salts will
eventually
deliquesce to
produce Cl-rich
brines
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Canister Surface Environment Underpins

SNL SCC Model

Evolving canister environmental conditions: RH, T, Salt chemistry, Salt load
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Airflow and Salt Deposition Model
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See Bryan et al.(2022), paper and presentation for model overview and Gilkey et al. (2022) for detailed report on the SCC model



Generating Canister Relevant

Environments

We aim to improve our understanding of the canister surface environment to reduce
uncertainties in the SCC model by reducing conservatisms in assumptions

Dust/Salt Composition Presence of Inert Dust
Evaluate how different salt chemistries at Determine how the presence of inert dust (e.g.
IFISIs impact brine properties and corrosion minerals, organic materials) impact brine
susceptibility behavior and corrosion

Sea-salt aggregates from the surface of a Diablo Dust on a storage canister surface, Calvert
Canyon storage canister (Bryan, C. 2014) Cliffs ISFSI (EPRI 2014)

Diurnal Cycling
Employ diurnal or seasonal T and RH

changes in testing to assess its impact to

Temp (°C), AH (g/m3), or RH(%)

develop corrosive environment
—T°C ——RH% ——AH, g/m3

0 50 100 150 200 250 300 350
Day of the Year
Weather Data from Arkansas Nuclear 1
(Schaller et al. (2021))
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ISFSI Site Sampling 2014 to Date @

Dust samples collected from 8 ISFSIs, and relevant diurnal cycles from weather data were calculated for 5
ISFSIs. Site-specific data are used to better understand factors that influence surface environment

Dust/Salt Collected 3

Relevant Diurnal Cycle Calculated
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Sampling Methods

The canister configuration, sampled area, and sampling methods varied from site-to-site.

* Sampling efficiency has not been validated for any method

2013

if€c1,2 ’

Calvert Cliffs 2015
Hope Creek 34 2014
Diablo Canyon3-3 2014
2016,

Maine Yankee 26,7 2018,
2019

Inland Site A8 2020
Inland Site B? 2020
2022

Arkansas Nuclear 17
Turkey Point 7

'EPRI (2014); ?Bryan, C. and Schindelholz, E (2017); *Btyan, C. and Enos, D. (2014); Bryan, C. and Enos, D. (2015); EPRI (2016); Schaller, R. et al. (2019); Schaller et al. (2020); *Bryan, C.
and Knight, A. (2020); *Knight, A. and Bryan, C. (2020); 1’Bryan, C. et al. (2022); !Schaller et al. (2022)
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Soluble Salt Analysis

Soluble salts were leached and analyzed by ion chromatograph and dissolved
inorganic carbon analyzer to determine the salt composition and loading

Relative amaun taf I
soluble salts
F1: 12 o’clock

I 1190.0 pg

E1l: 10 o'clock

I Al: 2 o'clock
1248.9 ug

791.8 ug

C1: Longitudinal Weld

3215 pg l
A2: 4 o'clock
E2: 8 o'clock
W93
321.2 pg I He

F2: Above H5M Rail (left)
337.1pg

C2: Above HSM Rail (right)
624.5 ug

Total Soluble Salts as a function of canister
location at Site B

Knight, A. and Bryan, C. (2020). SAND2020-14144
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Determining Canister Relevant Brine

Composition for Testing

nnipiteda

Site specific deliquescence behavior of observed brine compositions corrosion
* Salt composition collected from 6 ISFSI sites jl e
* 3 east coast near-marine sites (Calvert Cliffs, Maine Yankee, and Hope Creek) — mix of sea ;:1_ : %. FL’

salts and continental salts
* 1 west coast near-marine site (Diablo Canyon) — primarily sea salts

Nitrate DD (ug/cm?2)

* 2 inland sites (“Site A” and “Site B”) — primarily continental salts

Cook, A. J. et al o
(2017). J. oy

Deliquescence behavior and salt chemistry will impact the corrosion  zepaer s ERERTRENT
. . Chloride DD (pg/cm?)
properties of the brine

304L plate with mixed
* Evidence suggests that nitrates may inhibit corrosion, therefore the NO,/Cl-is being droplets of MgCl; + Mg(NOy)z
evaluated (see Rebecca Schaller’s paper)
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Dust/Salt Morphology and Mineralogy

Seen at ISFSIs

Evaluated particle size distributions at 6 ISFSI sites (4 Particle Size distribution at 6 ISFSI Sites
coastal, 2 inland) to estimate particle size distributions e Yok

Calvert Cliffs

via SEM image analysis s | omall dust o
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Mimicking the Canister Dust Environment

for Testing

What role does inert dust (e.g. minerals, organic materials) play

on brine properties and corrosion?

* Capillary processes: potential formation of a continuous brine (small dust
particles); potential for crevicing (large dust particles)

* Deposited 74 um, £10 um, and mixed sized silica onto corrosion coupons for
atmospheric exposure (See Rebecca Schaller’s paper)

No dust—discrete deliquesced brine droplets

Small dust grains — continuous brine film

S

Large dust grains — crevicing?

Dust

\ .,

| DljSt d.epo

Possible influence dust can have on corrosion
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Seasonal and Diurnal Weather Cycles

Using local weather data (T, AH, RH), realistic diurnal cycles can be simulated at various AT using water
equation of state! (Wagner and Pruf (2002).

* We know that the canister surface temperature fluctuates with changes in ambient T, while maintaining a
temperature delta (as a function of the canister heat load and time)

* As the canister cools, the RH can increase to a point where salts will deliquesce.

100 Ambient weather data from Arkansas Nuclear 1 RH as a function of time and location on the canister
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Developing a Canister Relevant

Cyclic Environment

What are relevant diurnal cycles?

* AT varies over time as SNF cools, so infinite number of Canister
cycles exist. surface + 20
: : °Cab
* Focus on RH ranges where large changes in brine an?biz\:\:
volume/composition occur
* MgCl,:6H,0 (bischofite) deliquescence (~ 35 % RH) —
potential brine deliquescence/dryout can occur within a
few decades (worst case) .
Canister
* NaCl (halite) dissolution (~¥74 % RH) - associated with large surface + 10
changes in brine volume and composition — but may not °C above
occur for >300 years /ambient
Best fit to fluctuate about the DRH, .. it
* Arkansas Nuclear 1 weather data with a AT = 10°C, 12-
step daily (24 hour) cycle fit to canister surface T-RH
data Canister
surface at

ambient T

Temp (2C), or RH(%)

— | T+20
—— RH# at [T+20]3C

50 100 150 200 150 300 350
Day of the Year

Temp (9C), or RH{%)
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Evaluating Cyclic Conditions @

—

A experimental cycle modeled off of )
Arkansas Nuclear 1 weather data and a 102C for A AVANANA quf*
R . B b ..J Yoo . Iha / \ey - ]
temperature delta is being used for a long- " N VNS
term corrosion experiments (See Rebecca .
Schaller’s paper) Ca | e
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Summary and Future Work @

Site specific data allows for informed testing of relevant factors that may impact
localized corrosion and potential for SCC

* Brine chemistry, specifically the NO,7/Cl ratio

* Presence of inert dust of varying particle sizes

* Diurnal and seasonal cycling, specially when the cycles cross specific deliguescence RHs
regularly

Corrosion testing to evaluate the impact of each of these specific conditions is
underway (See Rebecca Schaller’s paper “Accelerated Relevant Atmospheric
Corrosion Testing of Austenitic Stainless Steel for SNF Storage Environments”)

SNL plans to continue to obtain dust collected from ISFSIs across the US (2 more this
FY) and will continue to explore relevant factors that may impact the risk of SCC on
SNF canisters.
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