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Disclaimer

This is a technical presentation that does not take into account the contractual limitations or
obligations under the Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level
Radioactive Waste (Standard Contract) (10 CFR Part 961). For example, under the provisions
of the Standard Contract, spent nuclear fuel in multi-assembly canisters is not an acceptable
waste form, absent a mutually agreed to contract amendment.

To the extent discussions or recommendations in this presentation conflict with the provisions
of the Standard Contract, the Standard Contract governs the obligations of the parties, and
this presentation in no manner supersedes, overrides, or amends the Standard Contract.

This presentation reflects technical work which could support future decision making by DOE.
No inferences should be drawn from this presentation regarding future actions by DOE, which
are limited both by the terms of the Standard Contract and Congressional appropriations for
the Department to fulfill its obligations under the Nuclear Waste Policy Act including licensing
and construction of a spent nuclear fuel repository.
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Background

Disposal of spent nuclear fuel (SNF) is the responsibility of the US Department of
Energy (DOE)

Thousands of metrics tons of SNF has accumulated, much of which is stored in
dual-purpose canisters (DPC)

DPCs are licensed for storage and transportation but were not designed for
disposal; not designed to preclude criticality over repository timescales (10° yrs)

DOE has been investigating disposal of SNF in DPCs
* Avoids expense and worker dose associated with repackaging
* Introduces issues with respect to possible repository temperature limits
* Introduces issues with respect to emplacement and engineering
* Introduces possibility of postclosure criticality
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Managing Potential Occurrence of Postclosure Criticality

= Lower the probability of occurrence of postclosure criticality so that it is
unlikely from a regulatory point of view
* Use long-lasting neutron absorbing material in future DPCs; would require new license
* Revise the loading map for to-be-loaded SNF; would not require new license and is being

explored as a possibility
* Add filler material to already-loaded DPCs; subject of talks at this conference

» Assess the consequences of postclosure criticality and include in repository
performance calculations or exclude on the basis of low consequence

* |dentify features, events, and processes (FEPs) that need to be considered

* Develop the tools needed to include the relevant FEPs in models used to evaluate the
performance of hypothetical repositories for 108 years (performance assessment)

* Conduct performance assessment analyses both with and without the occurrence of
postclosure criticality and compare the results
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Analysis of FEPs

= Started with the list of FEPs developed for the Yucca Mountain Repository
Performance Assessment
* |dentified FEPs that could affect potential for and/or extent of a criticality event
* |dentified FEPs that could be affected by a criticality event
* |dentified FEPs that fell into both categories
* |dentified FEPs not previously considered for further development
= Undisturbed repository conditions (examples)
* Geometry and materials of waste package components
* Degradation rates of various components
* Backfill permeability
* Depth and saturation status of repository

= Termination mechanisms: grid spacer degradation
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Analysis of FEPs (cont'd)

= Nuclear Criticality in a Waste Package
* Waste package must fail first and allow water to enter

* Evaluation of as-loaded conditions indicate that about 70% of DPCs would remain
subcritical under two different stylized scenarios (loss of absorbers and loss of baskets)

* Neutronics of the critical system inside the DPC are coupled with the thermal-hydrologic
properties of the repository

= Thermal Effects (examples)

* Change properties of materials both inside and outside the waste package, which would
affect groundwater flow and radionuclide transport

* Affect corrosion rates for grid spacers, baskets, cladding, fuel, etc.
* |nventory Effects

* Generate fission products, some of which would not otherwise be included in
performance assessment calculations

* Generate and deplete fissile material
* Generate and deplete neutron absorbers
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Develop Tools to Model Relevant FEPs

= Used PFLOTRAN to model the performance of a hypothetical saturated
repository in a shale host rock 500 m below the ground surface

= PFLOTRAN already includes many of FEPs associated with undisturbed
repository conditions, but not criticality

= Developed a criticality submodule
* Heat of criticality
* Change in radionuclide inventory
* Decay heat from fission products created during the criticality event
* Specify start time and end time for criticality event

= Modify PFLOTRAN

* Include saturation and temperature dependent anisotropic thermal conductivity
* Include change in backfill materials (bentonite to illite)

Implementation of a grid spacer degradation model currently in process
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Hypothetical Saturated Repository
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Performance Assessment Analyses

= Waste package fails at 9,000 years after repository closure; water enters the
waste package; quasi steady-state criticality event begins

= Power of criticality event ranges from 1 to 4 kW, limited by moderator density
and assumes sub-cooled (non-boiling) conditions

= Duration of criticality event is 10,000 years

= Studied changes in radionuclide inventory at 20k years resulting from 2.47
KW event

= Compared repository performance with criticality event to that without
criticality event
* Temperature and liquid pressure at specific observation points within the model
* Effects of illitization model on permeability
* Transport of four radionuclides
* Dose to a member of the public from [-129
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Performance Assessment Analyses — PFLOTRAN model
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Performance Assessment Analyses — Inventory Changes in

Stable Fission Products

Stable Fission Products
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Performance Assessment Analyses — Inventory Changes in

Radioactive Fission and Activation Products

Radioactive Fission and Activation Products
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Performance Assessment Analyses — Inventory Changes in

Actinides and Decay Products

Actinides and Decay Products
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Performance Assessment Analyses — Observation Points
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Performance Assessment Analyses — Waste Package

Temperature
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Performance Assessment Analyses — Waste Package Pressure
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Performance Assessment Analyses — Backfill Permeability
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Performance Assessment Analyses — Cs-137 Concentrations
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Performance Assessment Analyses — Sr-90 Concentrations
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Performance Assessment Analyses — Dose to Member of Public
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Further Work

= Analyze neutronics under higher pressure conditions

= Analyze neutronics under boiling conditions

* |ncorporate additional FEPs into model of postclosure criticality
= Examine repository-wide uncertainty and variability

= Complete implementation of the grid spacer degradation model
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