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Motivation

. Stainless steels for nuclear applications develop He bubbles.

1 Bubbles promote brittle fracture especially at grain boundaries (GB).

1 Improved applications require an understanding of effects on:
» He bubble areal density on grain boundaries
» Bubble pressure
» Temperature

» Bubble radius
» Grain boundary types

] We attempt to use molecular dynamics (MD) simulations to
address these problems.
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Approach

Tensile tests of Fe,(Ni,,Cr,4(304L)-1%H with a bubble on GB are simulated.

Ten GB/cleavage planes are considered: 21{111}, 23{111}, 25{100}, 27{111},
29{411}, X11{311}, R{100}/{411}, Z1{100}, 21{311}, and Z1{411}.

tensile loading

Periodic boundary conditions are used 1n all three directions.
Strain controlled simulations with NVT ensemble are used.

Strain 1s applied in segments to allow time-averaged energies
and stresses to be calculated for each of the segments.

Various system dimensions ranging from ~200,000 to
700,000 atoms are explored.

The Fe-N-Cr-H EAM potential in Inter. J. Hydro. Ener., 47,
651 (2022), the He-He and He-metal pair potentials in J. Nuc.
Mater., 565, 153753 (2022) are used. tensile loading




Effects of Accelerated MD Strain Rate

(a) o vs. ¢ (b) AE vs. ¢
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Large strain rate overshoots stresses and energies. We will use € = 0.02 /ns.



Rates

(b) high strain rate of 0.20 (1/ns)
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Areal Coverage Effects

(a) cp and ejy; vs. R for 29{411}
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(b) op and ejy; vs. R for T11{311}
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1 Areal ratio can be changed by bubble radius or sample cross section area.

L The peak stress o, and integral energy e,

(1 With the area effect understood, We will use cross section area ~15X15 nm? below.

both decrease as bubble areal ratio increases.
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Bubble Pressure Effects

(a) o, for various interfaces (b) e;n for various interfaces
14 —— 3.0 Q 3.0 _
o XI{111} X X3{1115 é fg o T1{111} X £3{111}
~ 12} op; ® T5{100} X T7{111} = £ 55l o 35{100} X T7{111} .
A +Z9{411} +-Z11{311} 1 2.8 . 6 ' + 394411} +211{311}
O 10+ & e R{100}/{411} o~ o o R{100}/{411}
~ %% Po: —35{100} S 8207 °% o
S gl @ : . . 126 = © X X
@ ® o e o o ,_3 ga 15 XXX 1
L 6 o 5
£ 1248 2 | 4y
‘;j 4 i g b _I.O ... o [ ] ° N
: [L,8F |7 .
Q. 5l C 7 b oS .
~ =
ol s T P
0 2 4 6 8 10 12 14 16 18 20 & 0 2 4 6 8 10 12 14 16 18 20

input bubble pressure P (GPa) input bubble pressure P (GPa)
bubble radius r = 2.5 nm, temperature T = 300 K, strain rate € = 0.02 /ns

1 Output pressure remains around 2.4 — 2.6 GPa in the input pressure range 0 — 20 GPa.

[ Overall, increasing input pressure from 0 to 2 GPa decreases o, and e



Temperature Effects

(a) o, for various interfaces (b) e, for various interfaces
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 Increasing temperature slightly reduces peak stress and integral energy.

 This is consistent with thermally activated nucleation and migration of dislocations.



Bubble Radius Effects

(a) o vs. e for 11{311} (b) o, for various interfaces (¢) ey for various interfaces
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 Increasing bubble radius reduces peak stress and integral energy.

] Areal ratio seems to be more important than bubble radius.




(a) o, for various interfaces

Interface Type Effects
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Decohesion Energies vs. Interfaces
(averaged over 40 ns)

(a) no bubble (b) a bubble with radius 2.5 nm
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d X1{111} is weaker than X11{311}, but the other cleavage planes are
all stronger than GB or twin boundaries.

d The random GB R{100}/{411 }has the lowest decohesion energy.



Bubble Effects from All Data
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(@) =1{111}

Mechanistic Studies

1 X1{111} has an intermediate peak stress.
Dislocation formation easier?

d Compared with 29{411}, 25{100} has a
higher integral energy but a lower
decohesion energy. Why?

1 We explored these by visualizing time
evolution of atomic configurations.

 Indeed, the Z1{111} case forms
dislocations early.

7 | BE | A  The crack branches in the X5{100} case
I T I causing it to have a high integral energy.

—:<110>/2 1 <112>/6 —— : <110>/6 :<001>/3 (<111>/3
r=3.0nm, P=2 GPa, T =300 K, strain rate £ = 0.02 /ns
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Conclusions

Fracture energy decreases with increasing bubble areal ratio,
bubble pressure, temperature, and bubble radius.

Initial bubble pressure has little impact on intergranular fracture
because 1t quickly drops once dislocations move.

The bubble areal ratio has the most important effect on fracture.

Interface type sensitively impacts fracture. GB more likely
causes fracture than cleavage plane. Random GB more likely
causes fracture than coherent GB.



Helium Equation of State
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