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Material response during atmospheric entry is a multiphysical and
multiscale problem
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Constituent materials Structure-property Engineering +
Pyrolysis chemistry Local response analysis

Ablation chemistry Property prediction Bulk properties
Fiber/resin interface Material design Thermal protection
Morphology changes Stress generation Shape change

Mesoscale mod/sim offers a connection between research efforts




Mesoscale model development

Pyrolysis Gas Mesoscale ablation model
* Mesoscale porous media
« Two-phase
* Matrix and yarn domains
Porous enthalpy transport
* Localized transport
* Anisotropy
« Uptake from gas phase
Arrhenius decomposition
* Inert fibers
* Volumetric
Dynamic material properties
* Temperature and decomposition
Pyrolysis gas transport
* Darcy flow
* Pressure development

- Differing decomposition characteristics in composite regions * Generalized species transport

> Improved characterization of pyrolysis gases as function of heating | Sﬁgﬁg@?e reactions (secondary

rate/composition etc. .
o |deal proving ground for high-fidelity in-depth chemistry models Locally varying ablation rates

o Non-equilibrium p%/rolysis as composition, coking, in-depth oxidation - Development of surface
and interaction with boundary layer roughness

> Role and importance of species tracking and/or ROM for chemistry
> Mechanical response
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Material models
fibers plain weave fabric

matrix
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resin/char
dynamic
porosity

Material geometry
> Analytical forms, TexGen, image-based reconstruction

Refined constituent material characterization

Dynamic material properties
> Nonlinear dependence of k(3,T)
> Multi-scale calculation of permeability
o Consistent porosity evolution w.r.t. decomposition
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” Material response modeling with SIERRA/Aria

/
" @ .  SIERRA/Aria

{ggzv“ ' = Generalized thermal/fluids finite element code
‘\' = Multi-physics native and through coupling (mechanics, dynamics,
(\{ .
igh-Mac
\g high-Mach CFD)

= Multi-phase capabilities with stabilization (CVFEM)
S | M = Ablator material response modeling

Implementation and modernization of legacy models and methods
= B’ tables for ablation for non-decomposing, decomposing
= Heat of ablation models
= Effective property calculations
= Coupling to system models and aero CFD
= Advanced mesh motion TACOT Type Ill
= Coupled to transport equations ' -
= ALE/TALE/CDFEM ]\~ T -
= General Chemistry module [P 2 e
= Multiple species reactive transport _ T _:'
= Pyrolysis decomposition (volumetric) 3 —
* Interface/surface chemistry with dynamic/nonlinear surface quantiti A I
= Easily scripted for automatic input generation and parametric studi :. | | _ a9
i I

THERMAL FLUIDS

Pyrolysis
gas tracking

Park model with SPARC test vehicle
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Conformal decomposition (CDFEM)

Concept
/ o Use level set fields to define phases

> Solve for signed distance from interface

%Hi.vqﬁ:o n=Veg,xk=V-Vg
> Propagate level-set with velocity from B’ tables

o Decompose non-conformal elements into conformal ones
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Properties
o Supports wide variety of dynamic interfacial conditions
> Avoids manual generation of boundary fitted mesh
o Supports general topological evolution

What about bad elements?
o snapping: movement of background nodes prior to cutting

> edge collapses, face swaps, and edge swaps

Interface CFL condition couples mesh motion and
physics to time step selection

=P s

(Noble, 2010; Kramer, 2014; Roberts, 2018) ‘
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/ Exemplar formulation
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Convedive BC H=tH Rtialoondtbns: T=300 K, p= 101325 Pa (L atm }
tho,u,C, \ hidalgascom positbn eftopen g 9, pym sk gas, . )
b=t

H,=fp,m)—1

H=1, &0 =,

h=50 mm i
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Bottom BCG Dls B0ls  120s.

Admbatic, In pem eablk

Materials
° Fictitious woven composite
o TACOT decomposition kinetics for dense resin
o AWS Test Case Il heating, BCs, thermochemistry table
> Ablating fabric reinforcement
> Anisotropic material properties
o k(fabric) >> k(resin)

> Track interface motion using CDFEM
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Thermal response

o Local thermal response creates uneven
surface temperature and recession early

o Material anisotropy is essential
o Matrix between layers act as strong insulator

> Arrangement dependent

o Largely isothermal

- How to handle small domain size?
> Periodic BCs, remove adiabatic condition, coupling?




Pressure development

> Pyrolysis gas flow strongly follows connected charred
matrix phase

> Anisotropic permeability likely less significant

o Significant pressure generation between layers and upon
initial degradation




Approximate volume averaging of composite properties *
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* Work in progress




o Material anisotropy is essential.

- How to use these simulations?
o Explore structure/property relation and material design
o How to use developed surface roughness?
> What about upscaling?

- How to handle small domain size?
> How to push upper limits of simulation cost?
o Sustained blowing through char?

- What features are missing?

o Explore stress generation, deformation, and failure.
What about the aerodynamic heating boundary conditions?
Integration of high-fidelity chemistry (pyrolysis and ablation).
Resolving the created pore space.
Explore as-manufactured materials.
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Contact: Lincoln N. Collins, Icolli@sandia.gov

Team Members: Scott A. Roberts, Martin DiStefano,
Peter Creveling, Collin Foster
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7 Sandia’s multi-scale, multi-disciplinary approach to ablation

8 Processmg prepreg, )

Coupon/vehicle scale

Performance: Thermal,
recession, mechanical

Macroscale
\

/Behavior: mesoscale

simulation, measurement, full
system ablation

Mesoscale
—\

/Structure: Parametric

studies, thermal, mechanical,
3D imaging

Nanoscale + Microscale

Length Scale

/Composition: )

Property measurement,
perfqrmance NIRRT
prediction, ‘{g‘._*,\m\"w \N;;

interface \hm\-:\ N — . N

characterization, \m\ | Simulation )

chemistry (MD) } ( Experiment )
Combined

Complexity of Understanding
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Composite manufacturing
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Analytical and image-based
modeling (Foster)
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Micro- and meso-scale modeling
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Manufacturing of C-C Property prediction, interpolation, and UQ Ablation predictions (Collins)



