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Mesoscale mod/sim offers a connection between research efforts
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• Constituent materials
• Pyrolysis chemistry
• Ablation chemistry
• Fiber/resin interface
• Morphology changes

• Structure-property
• Local response
• Property prediction
• Material design
• Stress generation

• Engineering + 
analysis

• Bulk properties
• Thermal protection
• Shape change
• GSI/FSI

Material response during atmospheric entry is a multiphysical and 
multiscale problem



Mesoscale model development
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Mesoscale ablation model
• Mesoscale porous media

• Two-phase
• Matrix and yarn domains

• Porous enthalpy transport
• Localized transport
• Anisotropy
• Uptake from gas phase

• Arrhenius decomposition 
• Inert fibers
• Volumetric

• Dynamic material properties
• Temperature and decomposition

• Pyrolysis gas transport
• Darcy flow
• Pressure development
• Generalized species transport
• Gas-phase reactions (secondary 

pyrolysis)
• Surface reaction with char

• Locally varying ablation rates
• Development of surface 

roughness

q

(Amar)

◦ Differing decomposition characteristics in composite regions
◦ Improved characterization of pyrolysis gases as function of heating 

rate/composition etc.
◦ Ideal proving ground for high-fidelity in-depth chemistry models
◦ Non-equilibrium pyrolysis gas composition, coking, in-depth oxidation 

and interaction with boundary layer
◦ Role and importance of species tracking and/or ROM for chemistry
◦ Mechanical response



Material models

4

geometric properties
ᵆ� ᵆ� ᵅ� ᵆ�

 thickness width gap undulation

plain weave fabricfibers
matrix

resin/char
dynamic 
porosity

permeability

thermal conductivity Material geometry
◦ Analytical forms, TexGen, image-based reconstruction

 Refined constituent material characterization
 Dynamic material properties

◦ Nonlinear dependence of k(β,T)
◦ Multi-scale calculation of permeability
◦ Consistent porosity evolution w.r.t. decomposition



Material response modeling with SIERRA/Aria
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SIERRA/Aria
 Generalized thermal/fluids finite element code

 Multi-physics native and through coupling (mechanics, dynamics, 
high-Mach CFD)

 Multi-phase capabilities with stabilization (CVFEM)
 Ablator material response modeling

 Implementation and modernization of legacy models and methods
 B’ tables for ablation for non-decomposing, decomposing
 Heat of ablation models
 Effective property calculations
 Coupling to system models and aero CFD

 Advanced mesh motion
 Coupled to transport equations
 ALE/TALE/CDFEM

 General Chemistry module
 Multiple species reactive transport
 Pyrolysis decomposition (volumetric)
 Interface/surface chemistry with dynamic/nonlinear surface quantities
 Easily scripted for automatic input generation and parametric studies

CDFEMALE
Pyrolysis
gas tracking

Park model with SPARC test vehicle

TACOT Type III



Conformal decomposition (CDFEM)
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 Concept
◦ Use level set fields to define phases

◦ Solve for signed distance from interface

◦ Propagate level-set with velocity from B’ tables
◦ Decompose non-conformal elements into conformal ones

 Properties
◦ Supports wide variety of dynamic interfacial conditions 
◦ Avoids manual generation of boundary fitted mesh
◦ Supports general topological evolution

 What about bad elements?
◦ snapping: movement of background nodes prior to cutting
◦ edge collapses, face swaps, and edge swaps

 Interface CFL condition couples mesh motion and 
physics to time step selection

(Noble, 2010; Kramer, 2014; Roberts, 2018)



Exemplar formulation
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 Materials
◦ Fictitious woven composite

◦ TACOT decomposition kinetics for dense resin
◦ AWS Test Case II heating, BCs, thermochemistry table

◦ Ablating fabric reinforcement
◦ Anisotropic material properties

◦ k(fabric) >> k(resin)

◦ Track interface motion using CDFEM



Thermal response
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◦ Local thermal response creates uneven 
surface temperature and recession early

◦ Material anisotropy is essential
◦ Matrix between layers act as strong insulator

◦ Arrangement dependent

◦ Largely isothermal
◦ How to handle small domain size?

◦ Periodic BCs, remove adiabatic condition, coupling?



Pressure development

9

◦ Pyrolysis gas flow strongly follows connected charred 
matrix phase

◦ Anisotropic permeability likely less significant
◦ Significant pressure generation between layers and upon 

initial degradation



Comparison with bulk
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Approximate volume averaging of composite properties *

* Work in progress



Outlook
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◦ Material anisotropy is essential.
◦ How to use these simulations?

◦ Explore structure/property relation and material design
◦ How to use developed surface roughness?
◦ What about upscaling?

◦ How to handle small domain size?
◦ How to push upper limits of simulation cost?
◦ Sustained blowing through char?

◦ What features are missing?
◦ Explore stress generation, deformation, and failure.
◦ What about the aerodynamic heating boundary conditions?
◦ Integration of high-fidelity chemistry (pyrolysis and ablation).
◦ Resolving the created pore space.
◦ Explore as-manufactured materials.



Thank you!
Contact: Lincoln N. Collins, lcolli@sandia.gov

Team Members: Scott A. Roberts, Martin DiStefano, 
Peter Creveling, Collin Foster



Sandia’s multi-scale, multi-disciplinary approach to ablation
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Complexity of Understanding

Simulation

Experiment

Combined

Composition:  
Property measurement, 
performance 
prediction, 
interface 
characterization,
chemistry (MD)

Structure:  Parametric 
studies, thermal, mechanical, 
3D imaging

Nanoscale + Microscale

Mesoscale

Macroscale

Coupon/vehicle scale
Processing: prepreg, 
                      hot press 
                Performance: Thermal, 

recession, mechanical

Behavior: mesoscale 
simulation, measurement, full 
system ablation



Materials and manufacturing research
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Constituent material characterization

Composite manufacturing

Raman

Powder XRD
TGA

Multi-scale 
3D imaging



Microscale and mesoscale modeling
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Micro- and meso-scale modeling

Analytical and image-based 
modeling (Foster)

Manufacturing of C-C Property prediction, interpolation, and UQ Ablation predictions (Collins)


