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Background -SNF and SCC

Evolving canister environmental conditions: RH, T, Salt chemistry, Salt load
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Environment — Brine formation

Deliquescence of Sea Salts Equilibrium RH Dictates Brine Properties
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Corrosion Damage:

£ Function of brine
| rIncreasing' Canister Lifetime | C h em | St ry

Function of Deposition

What about factors
influencing/governing

First 300 —
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yrrs: MgCl,
dominant
brine

RH %

— Bryan, C. R., Knight, A. W., Katona, R. M., Sanchez, A. C,,
Schindelholz, E. J., & Schaller, R. F. (2022). Physical and

chemical properties of sea salt deliquescent brines as a
function of temperature and relative humidity. Science
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Environmental Influences
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Why care about pitting?

Transition Model

Pit to crack transition

Pit — stress/strain concentrator

Max Principal Stress

—

Kondo criteria

3, Max. Principal Fatigue Crack
(hve. Coit.: 75%)

Ero E. Cathode: area with radius r.

Corrosion Pit

Growth Rate

o

el e R O Bt T 1

Maximum pit model

Chen, Z. Y., & Kelly, R. G. (2009). Computational modeling of bounding conditions for pit size on stainless steel in atmospheric environments. Journal of the Electrochemical Society, 157(2), C69.

Turnbull, A., Wright, L., & Crocker, L. (2010). New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a corrosion pit. Corrosion Science, 52(4), 1492-1498. 5
Kondo, Y. Prediction of fatigue crack initiation life based on pit growth. Corrosion 45, 7-11, doi:10.5006/1.3577891 (1989).

Mai, W., & Soghrati, S. (2017). A phase field model for simulating the stress corrosion cracking initiated from pits. Corrosion Science, 125, 87-98.
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Development of Relevant Lab Exposures:
Environmental influences

Diurnal Cycles

RH (%)

Day of the Year

Cycle Conditions:

A. Knight Talk on Environment

Based on ISFSI weather
data

AT imposed mimic
canister surface

Probability

Dust/Precipitates

Dust Conditions:

e Dust size based on ISFSI
site collection

* Co-deposition of ASW
with SIL-CO-SIL® 75 or
MIN-U-SIL® 10

0.01

w Calvert CLiTTs

Electrochemical:

* NO;:Cl ratios
representative
of ISFSI sites

* Varied NO,:Cl
ratios in NaCl,
MgCL,,
Seawater

litiga mn

Salt Composition Assumption
Canister Thermal Model

Weather Model

Airflow and Salt Deposition Model

Is pitting behavior
influenced by SNF
conditions? i.e. higher T,
more concentrated brines

Explore influences of:
Diurnal Cycles
Dust
Chemistry




Development of Relevant Lab Exposures:
Material influences

Example Horizontal Canister Surface Roughness Characterization
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Salt Composition Assumption
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across canister surface
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Surface prep to remove
tooling marks

Material composition varies
per canister
manufacturer/date of
manufacturing
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Cycle Conditions:

Initial results of Relevant Lab Exposures: @

Incubation Time Pit Growth Crack Growth ! Mitigation & Repair ¥

Storage site weather data
AT: heated canister * Corrosion (Maximum Pit Size) Model

Fine distribution of
artificial seawater (300

ug/cm2) Explore
SS304, SS304H, SS316L inﬂuences Of:

Rough grind, 600 grit, and Diurnal Cycles
Dust
Chemistry
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What influences pit morphology?

1.0
Cycle Conditions: s
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What influences pit morphology?
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What influences pit morphology?
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What influences pit morphology?
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What influences pit morphology? @
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What influences pit morphology? @

Incubation Time Pit Griwwth Crack Growth | Mitigation & Repair
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What influences pit morphology?
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What influences pit morphology?

Corrosion (Maximum Pit Size) Model

Normalized Average

Initial attempt to
obtain quantitative
metrics
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Initial results of Relevant Lab Exposures:

Inert Dust

75'um dust

Particle Size

5 um dust 'y

Dust Exposures:

Corrosion (Maximum Pit Size) Model

Small (5 um), large (75
um) co-deposited with
300 ng/cm? ASW

Exposed: Cyclic and Explore

eatic 7> and 40k Rt at influences of:
Diurnal Cycles
Dust
Chemistry

Dust co-deposited
with ASW
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Influence of inert dust on pitting ’ @

+  Corrosion (Maximum Pit Size) Model

Optical Imaging: Post 1 mot xposure for oun
with 75 um dust co-deposited with ASW
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Influence of inert dust on pitting —— @

40 % RH 75 % RH SEM Of CorrOSTOn

. g ) v‘. Ak : ; A A g -2 an : __- e I .___ 2 & < - 5 . I_J I -l..-.-_-
' R Post corrosion
¥\ .' Y~ product removal

SEM Imaging: Post 1 month exposure for coupons
with 75 ym dust co-deposited with ASW

Pitting may be influenced by brine spreading and
crevice enviromments due to presence of dust




Initial results of Relevant Lab Exposures:
Chemistry

| Nitrate:Chloride Ratio Initial Chemistry Exposures:
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Initial results of Relevant Lab Exposures: @
Chemistry

Nitrate:Chloride Ratio Initial Chemistry Exposures: e TR
" o N
Incubation Time Pit Growwth Crack Growth { Mitigation & Repair ‘
e, o " * Accelerated electrochemical —
e ©® . m” » . - teStmg: » Corrosion (Maximum Pit Size) Model
8 u L n | 1:1 . .
e T T R * Full immersion
S [ YT U . ,
O A . il B RN L * 24 h open circuit potential e |
= | |
m Hope Creek 1:9 . . . xplore
00 [ o [ e » Anodic polarization p
|1 aMaineYankee | ___ o ! __lii_ Infl uences Of:
Inland site A 1
iand e Diurnal Cycles
0.01
"2 Ta3 M raciwin "2 T 23 M NaGI with 14 Naho,, DUSt
1{ e, oo Scan ot gnc Influences at
o { 5ot rate ratio of 1:4 Chemistry
3 3 Behavior
S S stochastic as
B B | scan rate and T
04 0 = o
_ = increased
024 —_=\ 024 =
04 ««]Temperature
LIRS S S T T S T LIRS S S T T T T A

log(i) (A/em?) log(i) (A/cm?)



Initial results of Relevant Lab Exposures:
Chemistry

| Nitrate:Chloride Ratio Initial Chemistry Exposures:
°. s . " * Accelerated electrochemical
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Initial results of Relevant Lab Exposures: @
Chemistry

Nitrate:Chloride Ratio Droplet Exposures:
Atmospheric Exposure Cycle 55°C |, \itrate: Chloride Ratio:

80 %
(A } * Corrosion (Maximum Pit Size) Model

* Range of 0:1 to 4:1

Sizes 1 to 4 pL

Composition 1.075 to 4.3 m NaCl Explore

Time 1 week influences of:
Diurnal Cycles
Dust
Chemistry

Time (hr)

Corrosion observed across all Nitrate:Chloride ratios and droplet sizes examined »




Pathway Forward @

o .« Goal is to develop an understanding of the
PIting b= relevant environmental and material
pitito parameters’ effects on localized corrosion
= Determine influences pit size, shape,
etc. under SNF relevant exposures
= How these may influence the pit to
Pit Growth crack transition? CGR?

. --:-&?ﬁﬂ;ﬂﬁﬁf—gﬁmc‘; #!"-.E ¥ L ; .' f PRL

Incubation Time

A A L\ N

| | | |

| | | |

| | | |

Pit Initiation | Crack Initiation Crack Penetration Repair
Salt Composition Assumption * Pit-to-Crack Canister Thermal Model
Canister Thermal Model Transition Model Weld Residual Stress Model
Weather Model Crack Growth Model
Airflow and Salt Deposition Model Brine Composition/Property Model
Canister Thermal Model

Weather Model

Airflow and Salt Deposition Model
Corrosion (Maximum Pit Size) Model
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Why is brine composition (RH) significant? @

: -«ﬂh-\w@wmﬁ&wﬁwﬁ A

3 T [resmeei
p— e e
Incubation Time Pit Griwwth Crack Growth * Mitigation & Repair ‘

HiGH RH: NaCl RICH BRINE Low RH: MgCl, RICH BRINE

Corrosion (Maximum Pit Size) Model

40% RH

A Is there a link between
morphology and exposure
RH?

Lower RH dominated by
MgCl,

Is it influences of HER?
Precipitates?

« 76% RH: pitting with increasing active area at conditions above
critical stability

* 40% RH: growth at critical stability - constant current through
a fixed active area

Weirich, T. D., Srinivasan, J., Taylor, J. M., Melia, M. A., Noell, P. J.,
Bryan, C. R., ... & Schindelholz, E. J. (2019). Humidity effects on

Observed link between morphology and exposure RH D Bl o oo o Caeacl (@ s salt partictes. Journat
(i.e., brine chemistry) 29
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Why care about pit morphology? —‘—‘—‘

Transition Model

| Are these irregular geometries significant? For pitting..pit to crack..CGR? |

Pit — stress concentrator Max Principal Stress Kondo criteria
| o - - o _1 m‘ Fatigue Crack

L o E. Cathode: area with radius r.

Corrasion Pit

x|

t =364 h t =364 h t=364h
Maximum pit model L S

Growth Rate

(AK)p

Chen, Z. Y., & Kelly, R. G. (2009). Computational modeling of bounding conditions for pit size on stainless steel in atmospheric environments. Journal of the Electrochemical Society, 157(2), C69.

Turnbull, A., Wright, L., & Crocker, L. (2010). New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a corrosion pit. Corrosion Science, 52(4), 1492-1498.
Kondo, Y. Prediction of fatigue crack initiation life based on pit growth. Corrosion 45, 7-11, doi:10.5006/1.3577891 (1989).

Mai, W., & Soghrati, S. (2017). A phase field model for simulating the stress corrosion cracking initiated from pits. Corrosion Science, 125, 87-98.



|s there a controlling species in the brine?

- I | &8

5.22 M NaCl

Incubation Time

Crack Growth !1 Mitigation & Repair !‘

‘c’ ;}.!lsf‘;-,_ o ARG e * Brine Composition

Dependence of
morphology on brine
composition

Possible influence of

carbonates?
Are microcracks enhanced @M@ to f@lﬁmitn@n of
MOQ? Srinivasan, et al., Correlation of Stainless Steel Pit
Morphology to Humidity Specific Sea Salt Brine
E)ﬁlh@m@d IHER @t t’h@ w’rfm@? Constituents. submitted to Corrosion,(2022).
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|s there a controlling species in the brine?

I However, MgCO3 formatlon not llkely due to very | "
slow kmetlcs

Ok but what is leadmg to the subsurface
m:crocrackmg’

Alr@ mn@r@@r@dks @Wh@ﬂ@@dl @M@ to f@lﬁm@tn@n of
MgCO;?
Enhanced HER at the surface?

So what is the carbonate influence?

* Brine Composition

Dependence of
morphology on brine
composition

Possible influence of
carbonates?

Srinivasan, et al., Correlation of Stainless Steel Pit
Morphology to Humidity Specific Sea Salt Brine
Constituents. submitted to Corrosion,(2022).
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Salt composition & deposition influences
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Salt composition & deposition influences
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Why care about brine influences?
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Surface finish residual stress influences pitting @
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Surface finish residual stress influences pitting

304L - #4 mechanical grind
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