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Project Goals
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Advancements in the field of image denoising 
have shown the benefits of incorporating 
discrete wavelet transforms (DWT) into 
convolutional neural networks (CNN) to create 
multi-level wavelet CNN (MWCNN) models.

Using data from the University of Utah 
Seismograph Stations (UUSS) network we 
compare the performance of the CNN and 
MWCNN denoising models using a set of 
metrics, including correlation coefficients, signal
-to-noise ratios, and signal-to-distortion ratios.



Constructing the Training Data
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The training, validation, and test data sets used 
to train the models were constructed using a 
set of 3,188 high-SNR “signal” waveforms and 
15,426 “noise” waveforms recorded on UUSS 
stations.

Each of the data sets were constructed by 
adding each signal waveform with a random 
noise waveform. This was repeated 60 times to 
create the total 191,280 waveforms where the 
signal and noise were pre-separated into sets 
using a 70-15-15 convention.



Constructing the Training Data
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The “noisy waveforms” and each of the original 
signal and noise waveforms of the training and 
validation data sets are transformed into the 
time-frequency domain using the short-time 
Fourier transform (STFT), or the time-scale 
domain using the continuous wavelet transform 
(CWT) method and used as the input and label 
data for the model training, respectively. 



Constructing the Training Data
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The denoising models output the signal and noise 
masks that represent time and frequency-
dependent filter operators. When these masks are 
multiplied with the input waveform and then put 
through an inverse wavelet transform or STFT 
operation then the resulting denoised signal and 
designaled noise waveforms are created.

To further evaluate the performance of the model 
we also gather a set of 5,525 raw 60-sec waveform 
segments collected on a set of UUSS stations for 
the period of 2018-2020 containing both 
earthquake and mining explosion data. The 
waveform were processed using the denoising 
approaches.



Wavelet Transforms
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Conventional pooling operations 
used in convolutional neural 
networks down-sample an input 
by using the maximum or average 
values over a defined window in 
time-frequency domain, which 
leads to a loss of all high-
frequency data causing poorer 
processing of feature maps. 



Wavelet Transforms
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Dilated filtering is a process where a 
feature map is decomposed into 
four sub-maps which are then 
processed through convolution 
using the same parameters on each 
sub-map. This operation is usually 
undertaken in the decoding stage of 
a U-Net style architecture and is 
unable to re-construct any data that 
was previously lost in the encoding 
stage of the model. 



Wavelet Transforms
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The DWT function is an expanded 
version of the standard pooling 
function, wherein we use fixed 
weights in the convolution process 
to keep high-frequency data.

The IWT function reconstructs a 
feature map from the created sub-
images as a type of dilated filtering 
which doesn’t suffer from gridding 
effects.



MWCNN Model Architecture
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FCN Model Architecture
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Model Evaluation Metrics
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The models are evaluated using the noise 
and signal constructed test dataset and a 
number of different criteria. These 
criteria include the ability of the denoising 
model to recover the original signal and 
noise waveforms with high fidelity. This 
ability is estimated by measuring the 
degree of similarity using cross correlation, 
and the degree of amplitude distortion 
using the signal-to-distortion ratio (SDR) 
which we seek to maximize.

The equation to calculate SDR is shown 
above with WGT being the original 
waveforms and W being the recovered 
(denoised) waveform.



Model Evaluation Metrics

November 14, 2022 12

The models are evaluated using 
real-world non-constructed data 
collected from selected UUSS 
network stations where the main 
evaluation metric is the 
improvement in SNR of the 
denoised signal waveforms when 
compared to the raw waveforms 
and those that have been 
bandpass filtered. 



Denoising Results
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Model evaluation on the test data 
sets shows that the MWCNN 
model outperforms the FCN 
version at being able to re-
construct both the shape and 
amplitude values of the input 
signal data with higher fidelity.



Denoising Results
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The performance of the MWCNN 
and FCN models is more 
comparable when it comes to the 
noise component of the test data. 
For the test data the MWCNN 
model was able to slightly 
improve upon the waveform 
shape but wasn’t able to improve 
upon the amplitude.



Denoising Results
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Comparisons of SNR improvements 
between each of the denoising 
models and bandpass filtering show 
that the denoisers consistently 
outperform standard bandpass 
frequency filtering.

The MWCNN model greatly 
outperforms the FCN denoising 
model where the distribution of SNR 
improvements are more evenly 
distributed across greater values.



Application to Continuous Data
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We examine the ability of the MWCNN 
model to denoise continuous data by 
examining a 24-hour period on the 
vertical channel of station BRPU where 
there had previously been 12 detected 
events (shown above as blue vertical 
bars). 
To examine the potential of the 
MWCNN denoiser to help improve 
detection capabilities we ran an 
STA/LTA detector on the same segment 
of 24-hour data and found an 
additional 15 event detections (shown 
above as red vertical bars). 



Application to Continuous Data
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We examine the SNR differences 
between the raw and denoised 
data for both the original (blue) 
and newly detected (red) events 
and find that the denoiser 
consistently improves SNR values 
of detected events.



Application to Continuous Data
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Here, we show an example of an 
event that was able to be 
detected from the raw data and 
show how the MWCNN denoiser 
can improve the event's SNR. The 
event SNR is calculated by 
examining a 10-second signal 
window (bounded by red lines) 
and a preceding 9-second noise 
window (bounded by blue lines).



Application to Continuous Data
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Here, we show an example of an 
event that wasn't detected on the 
raw data but becomes much clearer 
using the denoised data.
Ultimately, we conclude that the 
MWCNN denoising model can 
greatly improve event detection 
capabilities and can either be 
utilized to re-analyze previously 
detected events or to search for 
potential missed events in segments 
of continuous data.
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