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Project Goals

Advancements in the field of image denoising
have shown the benefits of incorporating
discrete wavelet transforms (DWT) into
convolutional neural networks (CNN) to create
multi-level wavelet CNN (MWCNN) models.
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Using data from the University of Utah
Seismograph Stations (UWUSS) network we
compare the performance of the CNN and
MWCNN denoising models using a set of
metrics, including correlation coefficients, signal
-to-noise ratios, and signal-to-distortion ratios.
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Constructing the Training Data
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The training, validation, and test data sets used
to train the models were constructed using a
set of 3,188 high-SNR “signal” waveforms and
15,426 “noise” waveforms recorded on UUSS
stations.

Fach of the data sets were constructed by
adding each signal waveform with a random
noise waveform. This was repeated 60 times to
create the total 191,280 waveforms where the
signal and noise were pre-separated into sets
using a /0-15-15 convention.
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Constructing the Training Data
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The “noisy waveforms” and each of the original
signal and noise waveforms of the training and
validation data sets are transformed into the
time-frequency domain using the short-time
Fourier transform (STFT), or the time-scale
domain using the continuous wavelet transform
(CWT) method and used as the input and label
data for the model training, respectively.
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Constructing the Training Data
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The denoising models output the signal and noise
masks that represent time and frequency-
dependent filter operators. When these masks are
multiplied with the input waveform and then put
through an inverse wavelet transform or STFT
operation then the resulting denoised signal and
designaled noise waveforms are created.

To further evaluate the performance of the model
we also gather a set of 5,525 raw 60-sec waveform
segments collected on a set of UUSS stations for
the period of 2018-2020 containing both
earthquake and mining explosion data. The
waveform were processed using the denoising
approaches.
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Wavelet Transforms

Sum Pooling
Conventional pooling operations
used in convolutional neural
networks down-sample an input
N by using the maximum or average
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values over a defined window in
. time-frequency domain, which
eads to a loss of all high-

frequency data causing poorer
processing of feature maps.

® Factor 2 Sum-Pooling




Wavelet Transforms

Dilated filtering is a process where a

Dilated Filtering feature map is decomposed into
.C-. four sub-maps which are then
processed through convolution

using the same parameters on each
sub-map. This operation is usually
. = . undertaken in the decoding stage of
— a U-Net style architecture and is

@ rierngvin e cony unable to re-construct any data that
was previously lost in the encoding
stage of the model.

Conv
)

Shared Parameters

November 14, 2022 @ | 7



Wavelet Transforms
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Wavelet Transforms

Adapted From Liu et al., 2019

The DWT function is an expanded
version of the standard pooling
function, wherein we use fixed
weights in the convolution process
to keep high-frequency data.

The IWT function reconstructs a
feature map from the created sub-
images as a type of dilated filtering
which doesn't suffer from gridding
effects.
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MWCNN Model Architecture

Noisy Signal Signal and Noise Masks
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» Architecture of the denoiser network used in the MWCNN version of the model which combines a CNN approach with the use of DWT and IWT to

improve image processing performance with each of the boxes representing a different layer with the processes described in the legend.
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FCN Model Architecture

Signal Mask
Noise Mask
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* Architecture of the denoiser network that was used in the STFT and CWT-FCN versions of the model which utilizes a fully convolutional model network
where each box is a different layer and the legend describe the processes used for each layer. ReLU stands for rectified linear unit.

G 3x3 Conv2D + 2x2 stride + ReLU + BN

6 3x3 Deconv2D + 2x2 stride +ReLU+ BN + 30% Drop
G 1x1 Conv2D + softmax
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Model Evaluation Metrics
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The models are evaluated using the noise
and signal constructed test dataset and a
number of different criteria. These

criteria include the ability of the denoising
model to recover the original signal anad
noise waveforms with high fidelity. This
ability is estimated by measuring the
degree of similarity using cross correlation,
and the degree of amplitude distortion
using the signal-to-distortion ratio (SDR)
which we seek to maximize.

The equation to calculate SDR is shown
above with W being the original
waveforms and W being the recovered
(denoised) waveform.
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Model Evaluation Metrics
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The models are evaluated using
real-world non-constructed data
collected from selected UUSS
network stations where the main
evaluation metric is the
improvement in SNR of the
denoised signal waveforms when
compared to the raw wavetforms
and those that have been
bandpass filtered.
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Denoising Results

FCN Denoising Test Results
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Denoising Results

FCN Designaling Test Results

CEl F— The performance of the MWCNN

s o | SR om] and FCN models is more
comparable when it comes to the
noise component of the test data.
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Denoising Results

FCN Denoising Real Data Results
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Comparisons of SNR improvements
between each of the denoising
models and bandpass filtering show
that the denoisers consistently
outperform standard bandpass
frequency filtering.

The MWCNN model greatly
outperforms the FCN denoising
model where the distribution of SNR
improvements are more evenly
distributed across greater values.
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Application to Continuous Data
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We examine the ability of the MWCNN

model to denoise continuous data by

examining a 24-hour period on the

vertical channel of station BRPU where

there had previously been 12 detected

gven)ts (shown above as blue vertical
ars).

To examine the potential of the
MWCNN denoiser to help improve
detection capabilities we ran an
STA/LTA detector on the same segment
of 24-hour data and found an
additional 15 event detections (shown
above as red vertical bars).
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Application to Continuous Data
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We examine the SNR differences
between the raw and denoised
data for both the original (blue)
and newly detected (red) events
and find that the denoiser
consistently improves SNR values
of detected events.
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Application to Continuous Data
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Here, we show an example of an
event that was able to be
detected from the raw data and
show how the MWCNN denoiser
can improve the event's SNR. The
event SNR is calculated by
examining a 10-second signal
window (bounded by red lines)
and a preceding 9-second noise
window (bounded by blue lines).
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Application to Continuous Data
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Here, we show an example of an
event that wasn't detected on the
raw data but becomes much clearer
using the denoised data.

Ultimately, we conclude that the
MWCNN denoising model can
greatly improve event detection
capabilities and can either be
utilized to re-analyze previously
detected events or to search for
potential missed events in segments
of continuous data.
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