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Need for Energy Storage

* To combat climate change
further penetration of ey
renewable sources of energy
like solar and wind are
required, which can be

improved by energy storage
devices like batteries

* Two most dominant battery
chemistries: Lead acid and
Lithium-ion

* Both are unfortunately toxic,
expensive and unsafe




Why Zn|MnO,, battery?
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Zn: $4.1 kg'!
MnO,: $1.58 kg
KOH: $1.97 kgt (0

[ Abundant }

Identified
Mn ~ 0.86 million tons
Zn ~1.9 billion tons(?

[ Safe ] High energy
density

Non-flammable
Compatible in aqueous >400Wh/L
electrolyte

(1) N.D. Ingale et al, J. of Power Sources, 276 (2015)
(2) Mineral commodity summary data used from U.S. Geological Survey



Fundamental Electrochemical Reactions of Zn and MnO,
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Yadav et al, Chemical &Engineering News, 98 (19) 41-47 4




Challenges of Zn|MnO, Rechargeable Batteries

Pyrolusite

1. Crystal structure breakdown

Haeterolite
ZnMin O,

2. Form inactive phases from soluble

Mn3* ions
3. Poisoning by dissolved Zn ions
k4. Loss of active Mn ions

Agueous
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Safety
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Loss of capacity related to Zn
redistribution and unpredicted
cycle life due to dendrites

shorting the cell
\_ J

* Yadav et al, J. Mater. Chem. A, 2017, 5, 15845-15854 5




Motivation of the Development of Hydrogel Electrolytes

* Hydrogel electrolytes are being considered an alternative to liquid electrolytes
for non-spillable Zn|MnO, alkaline batteries

- protect active materials eventually leading to long cycle life
- keep safety from high pH electrolyte leaks

* It is necessary to develop hydrogel electrolytes not only to have high ionic
conductivity but also to allow high utilization of active materials

* The objective is to improve the maintainability and transportability of the
current rechargeable Zn|MnO, alkaline battery system



Hydrogel Electrolyte Synthesis: Free Radical Polymerization
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A poly(acrylic acid)-potassium hydroxide (PAA-KOH) hydrogel was investigated and
optimized as the electrolyte due to its high hydrophilicity and high ionic conductivity.
* Chemicals: Potassium persulfate (K,S,0q, initiator), Potassium hydroxide (KOH), Acrylic acid

(C,H;COOH, monomer), N,N’-Methylenebisacrylamide (cross-linker) 7



Hydrogel Electrolyte Synthesis: In Situ Polymerization
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Acrylic Acid

dropwise
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MBA & KOH solution cooling
down at 0°Cin the ice bath

Fill cells
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stirring
—
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Pull the vacuum
Let it soak and gel
Start Cycling

* To delay polymerization reaction kinetics, the temperature was kept at 0 °C

* It ensures enough time to soak porous Zn and MnO, electrodes




Current Findings under the 1t electron technology
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The “hump” peak signifies the beginning of the 2 electron reaction

of MnQ,,. It also signifies Zn ions influence on the electrochemical
Stray Zinc discharge of MnO, which ultimately leads to spinel formation (Mn,0,

and ZnMn,0,) that lead to capacity fade because of its inactivity.

* Hydrogel reduced zincate migration * Hydrogel reduced manganese
and the formation of stray Zn, which is dissolution and mitigated inactive
a cause of dendrite formation and spinel formation stemming from
eventually short circuits zincate

Cho et al, Poymers, 2022, 14 (3), 417 9



Targeting the 2" electron MnO, cycling

* Need to improve the utilization under the
2"d electron reaction for more energy
ensuring transportation and safety

* Key is to keep active Mn ions
- prevent Zn poisoning to active Mn ions

- the reversibility of a layered 6-MnQO,
morphology, Birnessite

* Cu makes Bi- 6-MnO, complex stable by
intercalation into Mn’s layered
morphology while cycling™*

- Used this cathode material for the
following experiment with the same
effective OH- concentration
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Gel Electrolyte Optimization
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No Flow

Flow
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* DOT regulation: no leaks allowed for non-spillable batteries from cracks/ruptures

* Find a sweet spot to satisfy making gel and ensuring ionic conductivity

e 3.95 10-5 mole fraction is determined

* All samples remained its gel shape, not behaved as water
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Leakage Experiment
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* Prismatic cell description and experimental * The gel proved much safer than liquid from
set up. Once the crack was produced, the spills but it still has room for the
total mass change was measured every 30 improvement to be non-spillable

minutes
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EIS Measurement for Zn Foil Symmetric cell: Zn diffusion
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* As the gel has a network structure, resistance is higher than the liquid

* lonic conductivity is close to each other (inset) 3



Cyclic Voltammtry Results with Liquid and Gel Electrolyte
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* The liquid electrolyte cell has the two Cu peaks faded at -0.6 V and -0.25 V over the
cycle, while gel electrolyte cell showed all peaks for all cycles

* Using the gel electrolyte is hypothesized to localize Cu and limit Cu diffusion so that it
makes [(Cu-Bi)Mn] complex formation reversible, leading stable performance

* Currently, two cathode samples stopped at -0.6 V and -0.7 V are investigated 14



Cycling Performance with the Hydrogel Electrolyte

(a) traditional liquid electrolyte cycles (b) gel electrolyte cycles
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* Cycling performances of MnO, cathode vs NiOOH with a Hg|HgO reference electrode at
C/20 charge and discharge (C is based on the 2" electron MnO, capacity). All cell
construction is identical and repeated three times

* Gel electrolyte cells are ongoing and outperforming 15



Dissecting the Cells After Galvanostatic Performance

(a) C/20 charge and discharge | (b) C/20 charge and
with liquid at 18t cycle discharge with gel at 57t
cycle

* The failure mechanism for the liquid electrolyte cell was due to short circuit caused

by Cu deposition all around the separator, while Cu is limitedly diffused in the gel cell
16



Conclusions

* The crosslinked gel electrolyte was incorporated into Zn| MnO, rechargeable
batteries making sure the ionic conductivity and safety

* The gel electrolyte limited Cu ion diffusion and mitigated Cu ion loss

* [t is assumed that the gel electrolyte makes stable [(Cu-Bi)Mn] complex,
leading long cycle life

17
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