

Spent Fuel and Waste Science and Technology (SFWST)

Progress on DPC Cement Filler Development

AMERICAN NUCLEAR SOCIETY
Phoenix, AZ Nov. 15, 2022

Mark L. F. Phillips,
PRRC
Mark J. Rigali, SNL

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

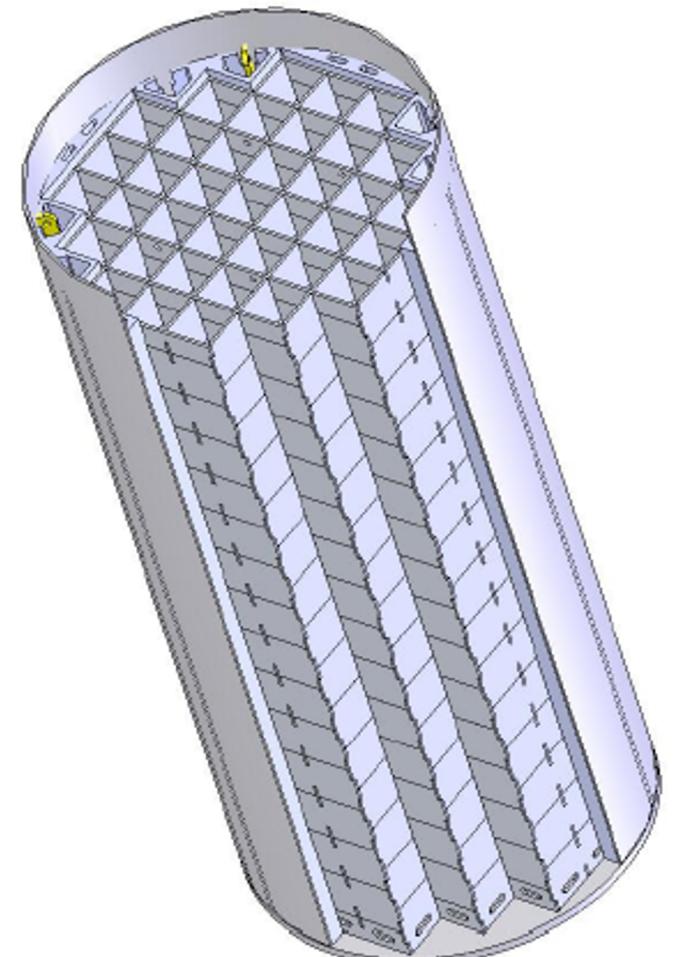
Disclaimer

This is a technical presentation that does not take into account contractual limitations or obligations under the Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) (10 CFR Part 961). For example, under the provisions of the Standard Contract, spent nuclear fuel in multi-assembly canisters is not an acceptable waste form, absent a mutually agreed to contract amendment.

To the extent discussions or recommendations in this presentation conflict with the provisions of the Standard Contract, the Standard Contract governs the obligations of the parties, and this presentation in no manner supersedes, overrides, or amends the Standard Contract.

This presentation reflects technical work which could support future decision making by DOE. No inferences should be drawn from this presentation regarding future actions by DOE, which are limited both by the terms of the Standard Contract and Congressional appropriations for the Department to fulfill its obligations under the Nuclear Waste Policy Act including licensing and construction of a spent nuclear fuel repository.

Options for Dual Purpose Canister (DPC) Disposal*


*Spent Nuclear Fuel (SNF) currently stored in DPCs at numerous sites across the US.

Repackage the SNF into canisters that are designed to remain subcritical during the regulated post-closure period following disposal.

Alternatives Under Evaluation:

Direct Disposal of DPCs.

Fill and dispose DPCs with a material that significantly limits criticality over the post-closure regulatory period.

*As of June 2022 there are more than 3,700 DPCs in storage across the U.S.

MPC-37

Attributes for DPC Fillers

- Moderator Displacement
- Material Compatibility
- Ease of Injectability
- Minimal Intrinsic Neutron Moderation
- Minimal Gas Generation
- Long-Term Chemical Stability
- Radionuclide Sequestration

Phosphate-Based Cements

Low Melting Point Metals

Phosphate Cements as DPC Fillers

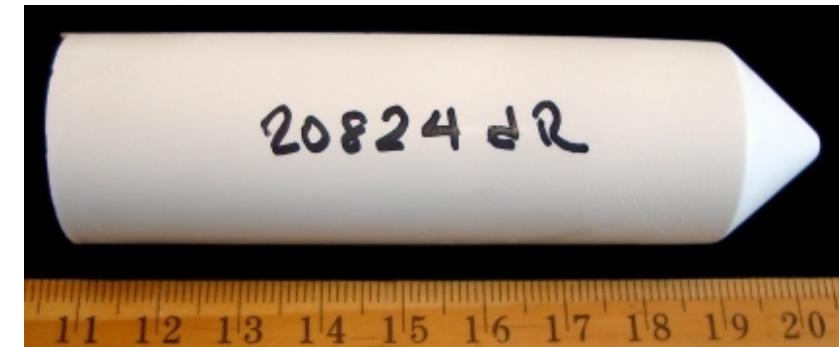
Advantages of phosphate cements:

- Inorganic
- Nontoxic / non-corrosive
- Set at elevated temperature
 - Long room temp working times available
- Very low solubilities
- Self-bonding
- Radiation stable
- Radionuclide sequestration

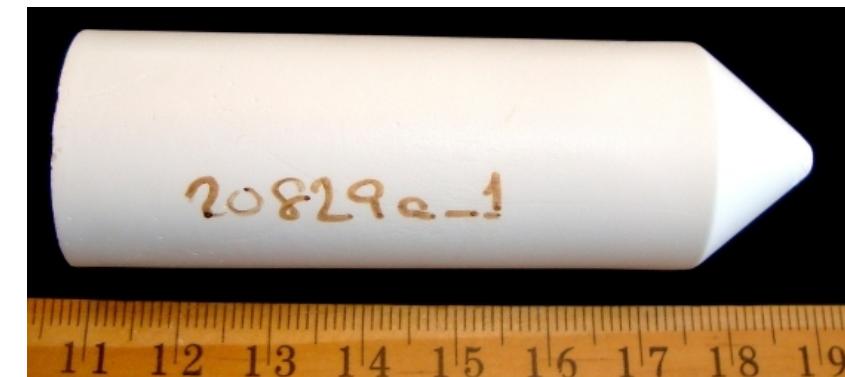
$\text{CaSiO}_3 / \text{Al(OH)}_3$ with sodium phosphate

Phosphate Cements Under Evaluation

Phosphate cements: aqueous phosphate with materials containing CaO and/or Al₂O₃.


Examples of reactants:

Aluminum Oxide (corundum), Al(OH)₃

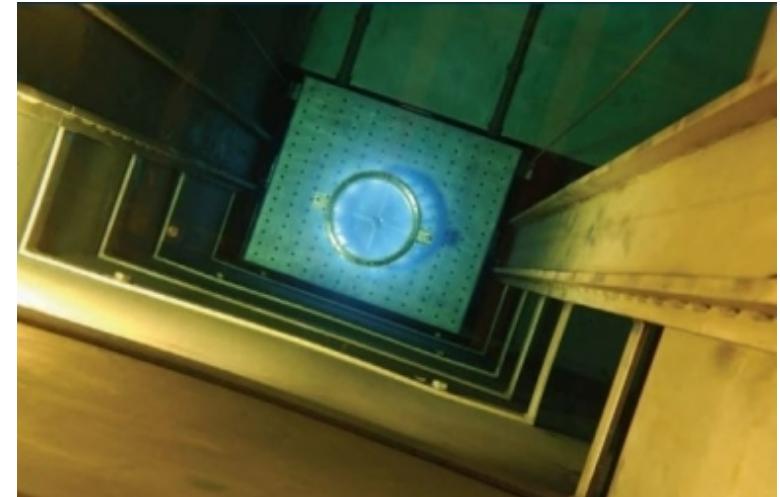

- CaSiO_3 (wollastonite)
- Calcium aluminate ($\text{Ca}_3\text{Al}_2\text{O}_6$, CaAl_2O_4 ,
- CaAl_4O_7 , $\text{CaAl}_{12}\text{O}_{19}$)
- Blends of the above oxides

Phosphate sources:

- Orthophosphate (H_3PO_4 , $\text{NH}_4\text{H}_2\text{PO}_4$, NaH_2PO_4)
- Polyphosphate ($\text{Na}_5\text{P}_3\text{O}_{10}$, $(\text{NaPO}_3)_3$,
- $(\text{NH}_4\text{PO}_3)_x$, $(\text{NaPO}_3)_6$)
- Boron phosphate (BPO_4)

1:1 CaSiO_3 / CaAl_4O_7 with $(\text{NaPO}_3)_6$

CaAl_4O_7 with $(\text{NaPO}_3)_6$

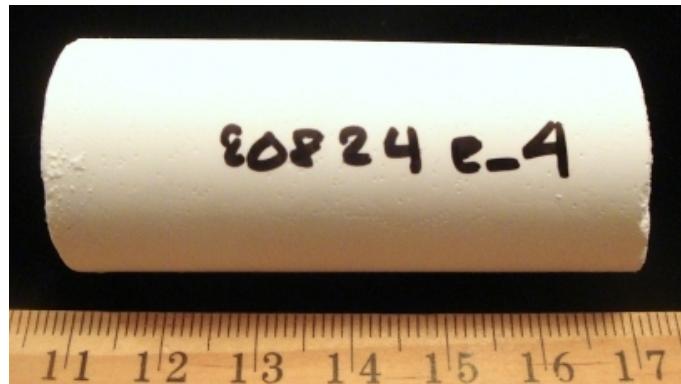

Advanced Testing of PO₄ Cements

⁶⁰Co gamma radiation testing:

24 2"x1" samples of 6 compositions were made.
2 samples of each composition were exposed to
~25 MGy ⁶⁰Co gamma over 2 weeks.

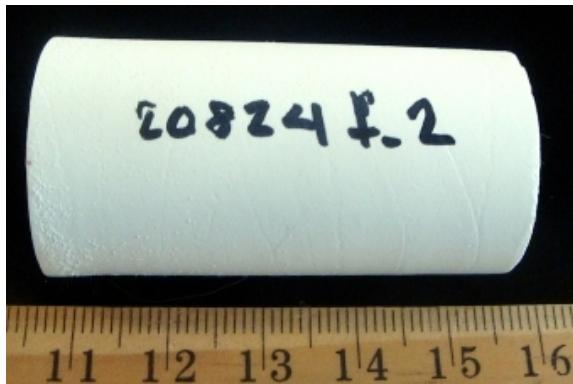
The compositions:

- CaAl₄O₇ / CaSiO₃ with polyphosphate (2)
- CaSiO₃ / Al(OH)₃ with BPO₄
- CaAl₄O₇ / GdAlO₃ with polyphosphate
- CaAl₄O₇ with polyphosphate
- CaAl₄O₇ / CaAl₂O₄ with polyphosphate



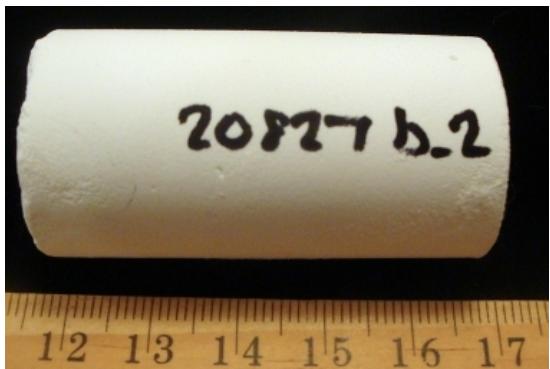
Hydrothermal testing:

One sample of each irradiated cement was immersed in water at 250 C / 39.8 MPa for 7 days.



Gamma Radiation / Hydrothermal Test Results

Contains AlOOH and $(\text{Ca}_5(\text{PO}_4)_3\text{OH})$ by XRD. CaSiO_3 was not detected.

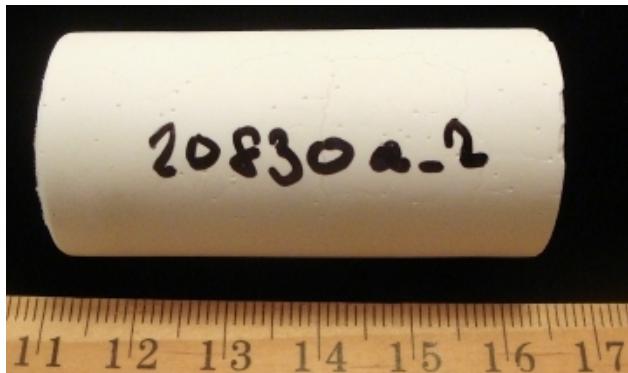

1:9 CaSiO_3 / CaAl_4O_7 with $(\text{NaPO}_3)_6$	UCC Strength (MPa)	Young's Modulus (GPa)	Poisson's Ratio
pre- ${}^{60}\text{Co}$	n/a	n/a	n/a
post- ${}^{60}\text{Co}$	54.7	10.0	0.14
${}^{60}\text{Co} + \text{H}_2\text{O} / 250^\circ\text{C}$	67.2	25.1	0.23

Contains CaSiO_3 , $\text{Ca}_5(\text{PO}_4)_3\text{OH}$, and AlPO_4 .

1:24 CaSiO_3 / CaAl_4O_7 with $(\text{NaPO}_3)_6$	UCC Strength (MPa)	Young's Modulus (GPa)	Poisson's Ratio
pre- ${}^{60}\text{Co}$	4.7	2.3	0.16
post- ${}^{60}\text{Co}$	5.5	3.2	0.15
${}^{60}\text{Co} + \text{H}_2\text{O} / 250^\circ\text{C}$	5.1	2.4	0.08

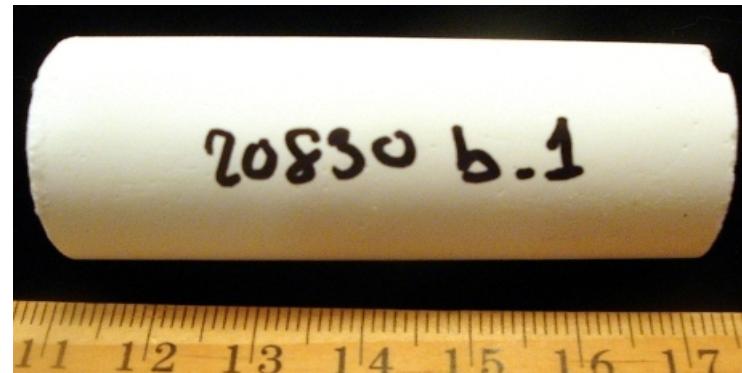
Gamma Radiation / Hydrothermal Test Results

Contains CaSiO_3 and $\text{Ca}_9\text{Al}(\text{PO}_4)_7$.



Consists of an undetermined phase.

10:1 CaSiO_3 / Al(OH)_3 with BPO_4	UCC Strength (MPa)	Young's Modulus (GPa)	Poisson's Ratio
pre- ${}^{60}\text{Co}$	8.3	43	n/a
post- ${}^{60}\text{Co}$	6.1	1.67	0.13
${}^{60}\text{Co} + \text{H}_2\text{O} / 250^\circ\text{C}$	0.8	25.1	n/a

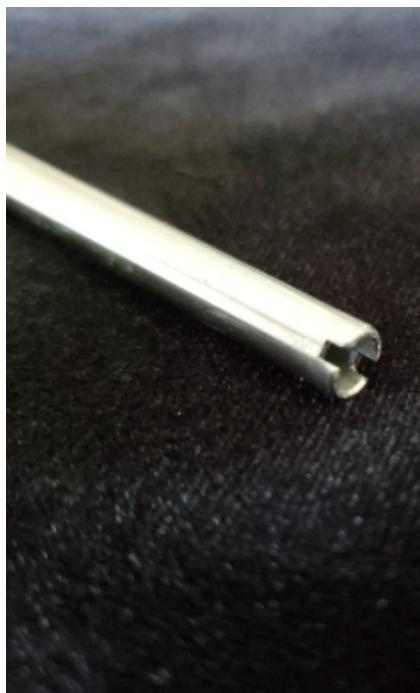
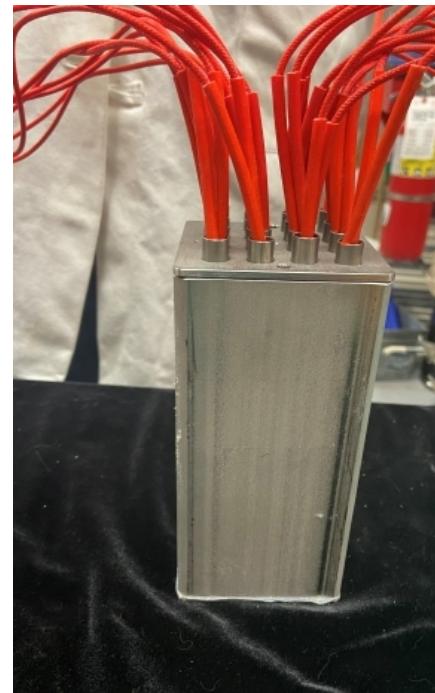

1:17 GdAlO_3 / CaAl_4O_7 with $(\text{NaPO}_3)_6$	UCC Strength (MPa)	Young's Modulus (GPa)	Poisson's Ratio
pre- ${}^{60}\text{Co}$	65.0	24.5	0.21
post- ${}^{60}\text{Co}$	n/a	n/a	n/a
${}^{60}\text{Co} + \text{H}_2\text{O} / 250^\circ\text{C}$	33.9	5.5	0.23

Gamma Radiation / Hydrothermal Test Results

Contains AlOOH and $\text{Ca}_5(\text{PO}_4)_3\text{OH}$.

CaAl_4O_7 with $(\text{NaPO}_3)_3$ and $(\text{NaPO}_3)_6$	UCC Strength (MPa)	Young's Modulus (GPa)	Poisson's Ratio
pre- ${}^{60}\text{Co}$	69.7	12.8	0.21
post- ${}^{60}\text{Co}$	53.6	22.7	0.18
${}^{60}\text{Co} + \text{H}_2\text{O} / 250^\circ\text{C}$	53.6	20.8	0.24

Contains AlOOH and $\text{Ca}_5(\text{PO}_4)_3\text{OH}$.



1:4 $\text{CaAl}_2\text{O}_4 / \text{CaAl}_4\text{O}_7$ with $(\text{NaPO}_3)_6$	UCC Strength (MPa)	Young's Modulus (GPa)	Poisson's Ratio
pre- ${}^{60}\text{Co}$	67.6	24.5	0.2
post- ${}^{60}\text{Co}$	36.1	8.05	0.13
${}^{60}\text{Co} + \text{H}_2\text{O} / 250^\circ\text{C}$	36.7	9.0	0.17

Observations

- Radiation by itself had little effect on external appearance or crystal structure.
- UCC measurements indicate samples were, on average, weakened by ^{60}Co γ irradiation.
- Hydrothermal exposure altered crystal structures of cement monoliths without changing gross morphology. In one case UCS increased.
- In-situ generation of $\text{Ca}_5(\text{PO}_4)_3\text{OH}$ has the potential to sequester both actinides (e.g., U and Pu) and fission products (Sr).

Subscale DPC Filler Test

Vessel

70 mm x 70 mm x 168 mm tall 304 stainless steel vessel.

16 cartridge heaters sheathed in zircaloy fuel rods, input voltage to heaters controlled by variable transformer.

Cement inlet tube designed to represent “drain pipe” with restricted flow.

Weight monitored during filling to observe weight gain / loss over time.

Temperature monitored by two thermocouples during the experiment.

Subscale DPC Filler Test: Pure CaAl_4O_7 / $(\text{NaPO}_3)_6$

Set power to achieve internal temperature of ~ 260 °C while the test fixture was **closed**.

Inlet tube is registered at the top of the vessel.

With the vessel on a scale, filling is initiated at a rate of 7 g / minute and completed after 2.6 hours when the vessel reached capacity.

Temperature at end of fill was 98.3 °C (boiling point of water). Heating was continued for another 43 hr until weight stabilized (presumed set), temperature 215.9 °C.

A 20 ton press was used to remove the cured material; cement may have been damaged upon extraction.

Conclusions and Recommendations

- CaAl_4O_7 / CaSiO_3 blends with polyphosphate show considerable promise with respect to durability based on preliminary irradiation and hydrothermal testing.
- Cement alteration to hydroxylapatite, an actinide and Sr getter, may be valuable.
- Increased strength upon hydrothermal exposure may be from self healing and/or self sealing. We will investigate.
- Future work will focus on using CaAl_4O_7 / CaSiO_3 phosphate cements in DPC mock-ups of increasing scale and complexity.